No Arabic abstract
Few-shot learning (FSL) aims to address the data-scarce problem. A standard FSL framework is composed of two components: (1) Pre-train. Employ the base data to generate a CNN-based feature extraction model (FEM). (2) Meta-test. Apply the trained FEM to acquire the novel datas features and recognize them. FSL relies heavily on the design of the FEM. However, various FEMs have distinct emphases. For example, several may focus more attention on the contour information, whereas others may lay particular emphasis on the texture information. The single-head feature is only a one-sided representation of the sample. Besides the negative influence of cross-domain (e.g., the trained FEM can not adapt to the novel class flawlessly), the distribution of novel data may have a certain degree of deviation compared with the ground truth distribution, which is dubbed as distribution-shift-problem (DSP). To address the DSP, we propose Multi-Head Feature Collaboration (MHFC) algorithm, which attempts to project the multi-head features (e.g., multiple features extracted from a variety of FEMs) to a unified space and fuse them to capture more discriminative information. Typically, first, we introduce a subspace learning method to transform the multi-head features to aligned low-dimensional representations. It corrects the DSP via learning the feature with more powerful discrimination and overcomes the problem of inconsistent measurement scales from different head features. Then, we design an attention block to update combination weights for each head feature automatically. It comprehensively considers the contribution of various perspectives and further improves the discrimination of features. We evaluate the proposed method on five benchmark datasets (including cross-domain experiments) and achieve significant improvements of 2.1%-7.8% compared with state-of-the-arts.
The recent flourish of deep learning in various tasks is largely accredited to the rich and accessible labeled data. Nonetheless, massive supervision remains a luxury for many real applications, boosting great interest in label-scarce techniques such as few-shot learning (FSL), which aims to learn concept of new classes with a few labeled samples. A natural approach to FSL is data augmentation and many recent works have proved the feasibility by proposing various data synthesis models. However, these models fail to well secure the discriminability and diversity of the synthesized data and thus often produce undesirable results. In this paper, we propose Adversarial Feature Hallucination Networks (AFHN) which is based on conditional Wasserstein Generative Adversarial networks (cWGAN) and hallucinates diverse and discriminative features conditioned on the few labeled samples. Two novel regularizers, i.e., the classification regularizer and the anti-collapse regularizer, are incorporated into AFHN to encourage discriminability and diversity of the synthesized features, respectively. Ablation study verifies the effectiveness of the proposed cWGAN based feature hallucination framework and the proposed regularizers. Comparative results on three common benchmark datasets substantiate the superiority of AFHN to existing data augmentation based FSL approaches and other state-of-the-art ones.
Contrastive learning is a discriminative approach that aims at grouping similar samples closer and diverse samples far from each other. It it an efficient technique to train an encoder generating distinguishable and informative representations, and it may even increase the encoders transferability. Most current applications of contrastive learning benefit only a single representation from the last layer of an encoder.In this paper, we propose a multi-level contrasitive learning approach which applies contrastive losses at different layers of an encoder to learn multiple representations from the encoder. Afterward, an ensemble can be constructed to take advantage of the multiple representations for the downstream tasks. We evaluated the proposed method on few-shot learning problems and conducted experiments using the mini-ImageNet and the tiered-ImageNet datasets. Our model achieved the new state-of-the-art results for both datasets, comparing to previous regular, ensemble, and contrastive learing (single-level) based approaches.
We propose a novel approach for few-shot talking-head synthesis. While recent works in neural talking heads have produced promising results, they can still produce images that do not preserve the identity of the subject in source images. We posit this is a result of the entangled representation of each subject in a single latent code that models 3D shape information, identity cues, colors, lighting and even background details. In contrast, we propose to factorize the representation of a subject into its spatial and style components. Our method generates a target frame in two steps. First, it predicts a dense spatial layout for the target image. Second, an image generator utilizes the predicted layout for spatial denormalization and synthesizes the target frame. We experimentally show that this disentangled representation leads to a significant improvement over previous methods, both quantitatively and qualitatively.
Few-shot learning is devoted to training a model on few samples. Recently, the method based on local descriptor metric-learning has achieved great performance. Most of these approaches learn a model based on a pixel-level metric. However, such works can only measure the relations between them on a single level, which is not comprehensive and effective. We argue that if query images can simultaneously be well classified via three distinct level similarity metrics, the query images within a class can be more tightly distributed in a smaller feature space, generating more discriminative feature maps. Motivated by this, we propose a novel Multi-level Metric Learning (MML) method for few-shot learning, which not only calculates the pixel-level similarity but also considers the similarity of part-level features and the similarity of distributions. First, we use a feature extractor to get the feature maps of images. Second, a multi-level metric module is proposed to calculate the part-level, pixel-level, and distribution-level similarities simultaneously. Specifically, the distribution-level similarity metric calculates the distribution distance (i.e., Wasserstein distance, Kullback-Leibler divergence) between query images and the support set, the pixel-level, and the part-level metric calculates the pixel-level and part-level similarities respectively. Finally, the fusion layer fuses three kinds of relation scores to obtain the final similarity score. Extensive experiments on popular benchmarks demonstrate that the MML method significantly outperforms the current state-of-the-art methods.
Zero-shot learning (ZSL) is made possible by learning a projection function between a feature space and a semantic space (e.g.,~an attribute space). Key to ZSL is thus to learn a projection that is robust against the often large domain gap between the seen and unseen class domains. In this work, this is achieved by unseen class data synthesis and robust projection function learning. Specifically, a novel semantic data synthesis strategy is proposed, by which semantic class prototypes (e.g., attribute vectors) are used to simply perturb seen class data for generating unseen class ones. As in any data synthesis/hallucination approach, there are ambiguities and uncertainties on how well the synthesised data can capture the targeted unseen class data distribution. To cope with this, the second contribution of this work is a novel projection learning model termed competitive bidirectional projection learning (BPL) designed to best utilise the ambiguous synthesised data. Specifically, we assume that each synthesised data point can belong to any unseen class; and the most likely two class candidates are exploited to learn a robust projection function in a competitive fashion. As a third contribution, we show that the proposed ZSL model can be easily extended to few-shot learning (FSL) by again exploiting semantic (class prototype guided) feature synthesis and competitive BPL. Extensive experiments show that our model achieves the state-of-the-art results on both problems.