Do you want to publish a course? Click here

A note on Goldbergs conjecture on total chromatic numbers

121   0   0.0 ( 0 )
 Added by Guangming Jing
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

Let $G=(V(G), E(G))$ be a multigraph with maximum degree $Delta(G)$, chromatic index $chi(G)$ and total chromatic number $chi(G)$. The Total Coloring conjecture proposed by Behzad and Vizing, independently, states that $chi(G)leq Delta(G)+mu(G) +1$ for a multigraph $G$, where $mu(G)$ is the multiplicity of $G$. Moreover, Goldberg conjectured that $chi(G)=chi(G)$ if $chi(G)geq Delta(G)+3$ and noticed the conjecture holds when $G$ is an edge-chromatic critical graph. By assuming the Goldberg-Seymour conjecture, we show that $chi(G)=chi(G)$ if $chi(G)geq max{ Delta(G)+2, |V(G)|+1}$ in this note. Consequently, $chi(G) = chi(G)$ if $chi(G) ge Delta(G) +2$ and $G$ has a spanning edge-chromatic critical subgraph.



rate research

Read More

The total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring of a graph is called the total dominator total chromatic number of the graph. Here, we will find the total dominator chromatic numbers of cycles and paths.
259 - Maysam Maysami Sadr 2019
The Frankl conjecture (called also union-closed sets conjecture) is one of the famous unsolved conjectures in combinatorics of finite sets. In this short note, we introduce and to some extent justify some variants of the Frankl conjecture.
Total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring of a graph is called the total dominator total chromatic number of the graph. Here, we will find the total dominator chromatic numbers of wheels, complete bipartite graphs and complete graphs.
Hadwigers conjecture is one of the most important and long-standing conjectures in graph theory. Reed and Seymour showed in 2004 that Hadwigers conjecture is true for line graphs. We investigate this conjecture on the closely related class of total graphs. The total graph of $G$, denoted by $T(G)$, is defined on the vertex set $V(G)sqcup E(G)$ with $c_1,c_2in V(G)sqcup E(G)$ adjacent whenever $c_1$ and $c_2$ are adjacent to or incident on each other in $G$. We first show that there exists a constant $C$ such that, if the connectivity of $G$ is at least $C$, then Hadwigers conjecture is true for $T(G)$. The total chromatic number $chi(G)$ of a graph $G$ is defined to be equal to the chromatic number of its total graph. That is, $chi(G)=chi(T(G))$. Another well-known conjecture in graph theory, the total coloring conjecture or TCC, states that for every graph $G$, $chi(G)leqDelta(G)+2$, where $Delta(G)$ is the maximum degree of $G$. We show that if a weaker version of the total coloring conjecture (weak TCC) namely, $chi(G)leqDelta(G)+3$, is true for a class of graphs $mathcal{F}$ that is closed under the operation of taking subgraphs, then Hadwigers conjecture is true for the class of total graphs of graphs in $mathcal{F}$. This motivated us to look for classes of graphs that satisfy weak TCC. It may be noted that a complete proof of TCC for even 4-colorable graphs (in fact even for planar graphs) has remained elusive even after decades of effort; but weak TCC can be proved easily for 4-colorable graphs. We noticed that in spite of the interest in studying $chi(G)$ in terms of $chi(G)$ right from the initial days, weak TCC is not proven to be true for $k$-colorable graphs even for $k=5$. In the second half of the paper, we make a contribution to the literature on total coloring by proving that $chi(G)leqDelta(G)+3$ for every 5-colorable graph $G$.
A set $D$ of vertices of a graph $G$ is a total dominating set if every vertex of $G$ is adjacent to at least one vertex of $D$. The total domination number of $G$ is the minimum cardinality of any total dominating set of $G$ and is denoted by $gamma_t(G)$. The total dominating set $D$ is called a total co-independent dominating set if $V(G)setminus D$ is an independent set and has at least one vertex. The minimum cardinality of any total co-independent dominating set is denoted by $gamma_{t,coi}(G)$. In this paper, we show that, for any tree $T$ of order $n$ and diameter at least three, $n-beta(T)leq gamma_{t,coi}(T)leq n-|L(T)|$ where $beta(T)$ is the maximum cardinality of any independent set and $L(T)$ is the set of leaves of $T$. We also characterize the families of trees attaining the extremal bounds above and show that the differences between the value of $gamma_{t,coi}(T)$ and these bounds can be arbitrarily large for some classes of trees.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا