Do you want to publish a course? Click here

Total Dominator Total Chromatic Numbers of Wheels, Complete bipartite graphs and Complete graphs

161   0   0.0 ( 0 )
 Added by Adel P. Kazemi
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

Total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring of a graph is called the total dominator total chromatic number of the graph. Here, we will find the total dominator chromatic numbers of wheels, complete bipartite graphs and complete graphs.



rate research

Read More

The total dominator total coloring of a graph is a total coloring of the graph such that each object of the graph is adjacent or incident to every object of some color class. The minimum namber of the color classes of a total dominator total coloring of a graph is called the total dominator total chromatic number of the graph. Here, we will find the total dominator chromatic numbers of cycles and paths.
A total dominator coloring of a graph $G$ is a proper coloring of $G$ in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dominator coloring of it. Here, we study the total dominator coloring on central graphs by giving some tight bounds for the total dominator chromatic number of the central of a graph, join of two graphs and Nordhaus-Gaddum-like relations. Also we will calculate the total dominator chromatic number of the central of a path, a cycle, a wheel, a complete graph and a complete multipartite graph.
Let $mathrm{rex}(n, F)$ denote the maximum number of edges in an $n$-vertex graph that is regular and does not contain $F$ as a subgraph. We give lower bounds on $mathrm{rex}(n, F)$, that are best possible up to a constant factor, when $F$ is one of $C_4$, $K_{2,t}$, $K_{3,3}$ or $K_{s,t}$ when $t>s!$.
A total dominator coloring of a graph G is a proper coloring of G in which each vertex of the graph is adjacent to every vertex of some color class. The total dominator chromatic number of a graph is the minimum number of color classes in a total dominator coloring. In this article, we study the total dominator coloring on middle graphs by giving several bounds for the case of general graphs and trees. Moreover, we calculate explicitely the total dominator chromatic number of the middle graph of several known families of graphs.
A total coloring of a graph $G$ is a coloring of its vertices and edges such that no adjacent vertices, edges, and no incident vertices and edges obtain the same color. An interval total $t$-coloring of a graph $G$ is a total coloring of $G$ with colors $1,ldots,t$ such that all colors are used, and the edges incident to each vertex $v$ together with $v$ are colored by $d_{G}(v)+1$ consecutive colors, where $d_{G}(v)$ is the degree of a vertex $v$ in $G$. In this paper we prove that all complete multipartite graphs with the same number of vertices in each part are interval total colorable. Moreover, we also give some bounds for the minimum and the maximum span in interval total colorings of these graphs. Next, we investigate interval total colorings of hypercubes $Q_{n}$. In particular, we prove that $Q_{n}$ ($ngeq 3$) has an interval total $t$-coloring if and only if $n+1leq tleq frac{(n+1)(n+2)}{2}$.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا