Do you want to publish a course? Click here

Exact emergent quantum state designs from quantum chaotic dynamics

171   0   0.0 ( 0 )
 Added by Wen Wei Ho
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present exact results on a novel kind of emergent random matrix universality that quantum many-body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis. We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details: it becomes uniformly distributed in Hilbert space. This goes beyond the standard paradigm of quantum thermalization, which dictates that the subsystem relaxes to an ensemble of quantum states that reproduces the expectation values of local observables in a thermal mixed state. Our results imply more generally that the distribution of quantum states themselves becomes indistinguishable from those of uniformly random ones, i.e. the ensemble forms a quantum state-design in the parlance of quantum information theory. Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics, opening up new ways to design applications for quantum state tomography and benchmarking.



rate research

Read More

Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of thermalization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state $k$-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that $k$-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.
We investigate the effect of quantum errors on a monitored Brownian Sachdev-Ye-Kitaev (SYK) model featuring a measurement-induced phase transition that can be understood as a symmetry-breaking transition of an effective $Z_4$ magnet in the replica space. The errors describe the loss of information about the measurement outcomes and are applied during the non-unitary evolution or at the end of the evolution. In the former case, we find that this error can be mapped to an emergent magnetic field in the $Z_4$ magnet, and as a consequence, the symmetry is explicitly broken independent of the measurement rate. Renyi entropies computed by twisting boundary conditions now generate domain walls even in the would-be symmetric phase at a high measurement rate. The entropy is therefore volume-law irrespective of the measurement rate. In the latter case, the error-induced magnetic field only exists near the boundary of the magnet. Varying the magnetic field leads to a pinning transition of domain walls, corresponding to error threshold of the quantum code prepared by the non-unitary SYK dynamics.
245 - Martin Claassen 2021
We develop a flow renormalization approach for periodically-driven quantum systems, which reveals prethermal dynamical regimes and associated timescales via direct correspondence between real time and flow time behavior. In this formalism, the dynamical problem is recast in terms of coupling constants of the theory flowing towards an attractive fixed point that represents the thermal Floquet Hamiltonian at long times, while narrowly avoiding a series of unstable fixed points which determine distinct prethermal regimes at intermediate times. We study a class of relevant perturbations that trigger the onset of heating and thermalization, and demonstrate that the renormalization flow has an elegant representation in terms of a flow of matrix product operators. Our results permit microscopic calculations of the emergence of distinct dynamical regimes directly in the thermodynamic limit in an efficient manner, establishing a new computational tool for driven non-equilibrium systems.
Rydberg atoms in optical tweezer arrays provide a playground for nonequilibrium quantum many-body physics. The PXP model describes the dynamics of such systems in the strongly interacting Rydberg blockade regime and notably exhibits weakly nonergodic dynamics due to quantum many-body scars. Here, we study the PXP model in a strong staggered external field, which has been proposed to manifest quasiparticle confinement in light of a mapping to a lattice gauge theory. We characterize this confining regime using both numerical exact diagonalization and perturbation theory around the strong-field limit. In addition to the expected emergent symmetry generated by the staggered field, we find a second emergent symmetry that is special to the PXP model. The interplay between these emergent symmetries and the Rydberg blockade constraint dramatically slows down the systems dynamics beyond naive expectations. We devise a nested Schrieffer-Wolff perturbation theory to properly account for the new emergent symmetry and show that this treatment is essential to understand the numerically observed relaxation time scales. We also discuss connections to Hilbert space fragmentation and trace the origin of the new emergent symmetry to a nearly-$SU(2)$ algebra discovered in the context of many-body scarring.
92 - L. Vidmar , D. Iyer , M. Rigol 2015
The quantum dynamics of interacting many-body systems has become a unique venue for the realization of novel states of matter. Here we unveil a new class of nonequilibrium states that are eigenstates of an emergent local Hamiltonian. The latter is explicitly time dependent and, even though it does not commute with the physical Hamiltonian, it behaves as a conserved quantity of the time-evolving system. We discuss two examples in which the emergent eigenstate solution can be applied for an extensive (in system size) time: transport in one-dimensional lattices with initial particle (or spin) imbalance, and sudden expansion of quantum gases in optical lattices. We focus on noninteracting spinless fermions, hard-core bosons, and the Heisenberg model. We show that current-carrying states can be ground states of emergent local Hamiltonians, and that they can exhibit a quasimomentum distribution function that is peaked at nonzero (and tunable) quasimomentum. We also show that time-evolving states can be highly-excited eigenstates of emergent local Hamiltonians, with an entanglement entropy that does not exhibit volume-law scaling.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا