No Arabic abstract
Quantum chaos in many-body systems provides a bridge between statistical and quantum physics with strong predictive power. This framework is valuable for analyzing properties of complex quantum systems such as energy spectra and the dynamics of thermalization. While contemporary methods in quantum chaos often rely on random ensembles of quantum states and Hamiltonians, this is not reflective of most real-world systems. In this paper, we introduce a new perspective: across a wide range of examples, a single non-random quantum state is shown to encode universal and highly random quantum state ensembles. We characterize these ensembles using the notion of quantum state $k$-designs from quantum information theory and investigate their universality using a combination of analytic and numerical techniques. In particular, we establish that $k$-designs arise naturally from generic states as well as individual states associated with strongly interacting, time-independent Hamiltonian dynamics. Our results offer a new approach for studying quantum chaos and provide a practical method for sampling approximately uniformly random states; the latter has wide-ranging applications in quantum information science from tomography to benchmarking.
We present exact results on a novel kind of emergent random matrix universality that quantum many-body systems at infinite temperature can exhibit. Specifically, we consider an ensemble of pure states supported on a small subsystem, generated from projective measurements of the remainder of the system in a local basis. We rigorously show that the ensemble, derived for a class of quantum chaotic systems undergoing quench dynamics, approaches a universal form completely independent of system details: it becomes uniformly distributed in Hilbert space. This goes beyond the standard paradigm of quantum thermalization, which dictates that the subsystem relaxes to an ensemble of quantum states that reproduces the expectation values of local observables in a thermal mixed state. Our results imply more generally that the distribution of quantum states themselves becomes indistinguishable from those of uniformly random ones, i.e. the ensemble forms a quantum state-design in the parlance of quantum information theory. Our work establishes bridges between quantum many-body physics, quantum information and random matrix theory, by showing that pseudo-random states can arise from isolated quantum dynamics, opening up new ways to design applications for quantum state tomography and benchmarking.
We study weak ergodicity breaking in a one-dimensional, nonintegrable spin-1 XY model. We construct for it an exact, highly excited eigenstate, which despite its large energy density, can be represented analytically by a finite bond-dimension matrix product state (MPS) with area-law entanglement. Upon a quench to a finite Zeeman field, the state undergoes periodic dynamics with perfect many-body revivals, in stark contrast to other generic initial states which instead rapidly thermalize. This dynamics can be completely understood in terms of the evolution of entangled virtual spin-1/2 degrees of freedom, which in turn underpin the presence of an extensive tower of strong-eigenstate thermalization hypothesis (ETH)-violating many-body eigenstates. The resulting quantum many-body scars are therefore of novel origin. Our results provide important analytical insights into the nature and entanglement structure of quantum many-body scars.
A profound quest of statistical mechanics is the origin of irreversibility - the arrow of time. New stimulants have been provided, thanks to unprecedented degree of control reached in experiments with isolated quantum systems and rapid theoretical developments of manybody localization in disordered interacting systems. The proposal of (many-body) eigenstate thermalization (ET) for these systems reinforces the common belief that either interaction or extrinsic randomness is required for thermalization. Here, we unveil a quantum thermalization mechanism challenging this belief. We find that, provided one-body quantum chaos is present, as a pure many-body state evolves the arrow of time can emerge, even without interaction or randomness. In times much larger than the Ehrenfest time that signals the breakdown of quantum-classical correspondence, quantum chaotic motion leads to thermal [Fermi-Dirac (FD) or Bose-Einstein (BE)] distributions and thermodynamics in individual eigenstates. Our findings lay dynamical foundation of statistical mechanics and thermodynamics of isolated quantum systems.
A visualization scheme for quantum many-body wavefunctions is described, which we have termed qubism. Its main property is its recursivity: increasing the number of qubits reflects in an increase in the image resolution. Thus, the plots are typically fractal. As examples, we provide images for the ground states of commonly used Hamiltonians in condensed matter and cold atom physics, such as Heisenberg or ITF. Many features of the wavefunction, such as magnetization, correlations and criticality, can be visualized as properties of the images. In particular, factorizability can be easily spotted, and a way to estimate the entanglement entropy from the image is provided.
Chaotic quantum many-body dynamics typically lead to relaxation of local observables. In this process, known as quantum thermalization, a subregion reaches a thermal state due to quantum correlations with the remainder of the system, which acts as an intrinsic bath. While the bath is generally assumed to be unobserved, modern quantum science experiments have the ability to track both subsystem and bath at a microscopic level. Here, by utilizing this ability, we discover that measurement results associated with small subsystems exhibit universal random statistics following chaotic quantum many-body dynamics, a phenomenon beyond the standard paradigm of quantum thermalization. We explain these observations with an ensemble of pure states, defined via correlations with the bath, that dynamically acquires a close to random distribution. Such random ensembles play an important role in quantum information science, associated with quantum supremacy tests and device verification, but typically require highly-engineered, time-dependent control for their preparation. In contrast, our approach uncovers random ensembles naturally emerging from evolution with a time-independent Hamiltonian. As an application of this emergent randomness, we develop a benchmarking protocol which estimates the many-body fidelity during generic chaotic evolution and demonstrate it using our Rydberg quantum simulator. Our work has wide ranging implications for the understanding of quantum many-body chaos and thermalization in terms of emergent randomness and at the same time paves the way for applications of this concept in a much wider context.