Do you want to publish a course? Click here

A model for gauged skyrmions with low binding energies

203   0   0.0 ( 0 )
 Added by Josh Cork
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We consider gauged skyrmions with boundary conditions which break the gauge from $mathrm{SU}(2)$ to $mathrm{U}(1)$ in models derived from Yang-Mills theory. After deriving general topological energy bounds, we approximate charge $1$ energy minimisers using KvBLL calorons with non-trivial asymptotic holonomy, use them to calibrate the model to optimise the ratio of energy to lower bound, and compare them with solutions to full numerical simulation. Skyrmions from calorons with non-trivial asymptotic holonomy exhibit a non-zero magnetic dipole moment, which we calculate explicitly, and compare with experimental values for the proton and the neutron. We thus propose a way to develop a physically realistic Skyrme-Maxwell theory, with the potential for exhibiting low binding energies.



rate research

Read More

Nuclear binding energies are investigated in two variants of the Skyrme model: the first replaces the usual Skyrme term with a term that is sixth order in derivatives, and the second includes a potential that is quartic in the pion fields. Solitons in the first model are shown to deviate significantly from ansatze previously assumed in the literature. The binding energies obtained in both models are lower than those obtained from the standard Skyrme model, and those obtained in the second model are close to the experimental values.
An omega-meson extension of the Skyrme model - without the Skyrme term but including the pion mass - first considered by Adkins and Nappi is studied in detail for baryon numbers 1 to 8. The static problem is reformulated as a constrained energy minimisation problem within a natural geometric framework and studied analytically on compact domains, and numerically on Euclidean space. Using a constrained second-order Newton flow algorithm, classical energy minimisers are constructed for various values of the omega-pion coupling. At high coupling, these Skyrmion solutions are qualitatively similar to the Skyrmions of the standard Skyrme model with massless pions. At sufficiently low coupling, they show similarities with those in the lightly bound Skyrme model: the Skyrmions of low baryon number dissociate into lightly bound clusters of distinct 1-Skyrmions, and the classical binding energies for baryon numbers 2 through 8 have realistic values.
A simple model of the dynamics of lightly bound skyrmions is developed in which skyrmions are replaced by point particles, each carrying an internal orientation. The model accounts well for the static energy minimizers of baryon number $1leq Bleq 8$ obtained by numerical simulation of the full field theory. For $9leq Bleq 23$, a large number of static solutions of the point particle model are found, all closely resembling size $B$ subsets of a face centred cubic lattice, with the particle orientations dictated by a simple colouring rule. Rigid body quantization of these solutions is performed, and the spin and isospin of the corresponding ground states extracted. As part of the quantization scheme, an algorithm to compute the symmetry group of an oriented point cloud, and to determine its corresponding Finkelstein-Rubinstein constraints, is devised.
133 - L.A. Ferreira , Ya. Shnir 2017
We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those two terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا