Do you want to publish a course? Click here

Complex BPS Skyrmions with real energy

92   0   0.0 ( 0 )
 Added by Andreas Fring
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We propose and investigate several compl



rate research

Read More

161 - S. A. Fedoruk , E. A. Ivanov , 2012
We derive and discuss, at both the classical and the quantum levels, generalized N = 2 supersymmetric quantum mechanical sigma models describing the motion over an arbitrary real or an arbitrary complex manifold with extra torsions. We analyze the relevant vacuum states to make explicit the fact that their number is not affected by adding the torsion terms.
The $phi^4$ model is coupled to an impurity in a way that preserves one-half of the BPS property. This means that the antikink-impurity bound state is still a BPS solution, i.e., a zero-pressure solution saturating the topological energy bound. The kink-impurity bound state, on the other hand, does not saturate the bound, in general. We found that, although the impurity breaks translational invariance, it is, in some sense, restored in the BPS sector where the energy of the antikink-impurity solution does not depend on their mutual distance. This is reflected in the existence of a generalised translational symmetry and a zero mode. We also investigate scattering processes. In particular, we compare the antikink-impurity interaction close to the BPS regime, which presents a rather smooth, elastic like nature, with other scattering processes. However, even in this case, after exciting a sufficiently large linear mode on the incoming antikink, we can depart from the close-to-BPS regime. This results, for example, in a backward scattering.
We consider gauged skyrmions with boundary conditions which break the gauge from $mathrm{SU}(2)$ to $mathrm{U}(1)$ in models derived from Yang-Mills theory. After deriving general topological energy bounds, we approximate charge $1$ energy minimisers using KvBLL calorons with non-trivial asymptotic holonomy, use them to calibrate the model to optimise the ratio of energy to lower bound, and compare them with solutions to full numerical simulation. Skyrmions from calorons with non-trivial asymptotic holonomy exhibit a non-zero magnetic dipole moment, which we calculate explicitly, and compare with experimental values for the proton and the neutron. We thus propose a way to develop a physically realistic Skyrme-Maxwell theory, with the potential for exhibiting low binding energies.
133 - L.A. Ferreira , Ya. Shnir 2017
We introduce a Skyrme type model with the target space being the 3-sphere S^3 and with an action possessing, as usual, quadratic and quartic terms in field derivatives. The novel character of the model is that the strength of the couplings of those two terms are allowed to depend upon the space-time coordinates. The model should therefore be interpreted as an effective theory, such that those couplings correspond in fact to low energy expectation values of fields belonging to a more fundamental theory at high energies. The theory possesses a self-dual sector that saturates the Bogomolny bound leading to an energy depending linearly on the topological charge. The self-duality equations are conformally invariant in three space dimensions leading to a toroidal ansatz and exact self-dual Skyrmion solutions. Those solutions are labelled by two integers and, despite their toroidal character, the energy density is spherically symmetric when those integers are equal and oblate or prolate otherwise.
We establish duality between real forms of the quantum deformation of the 4-dimensional orthogonal group studied by Fioresi et al. and the classification work made by Borowiec et al.. Classically these real forms are the isometry groups of $mathbb{R}^4$ equipped with Euclidean, Kleinian or Lorentzian metric. A general deformation, named $q$-linked, of each of these spaces is then constructed, together with the coaction of the corresponding isometry group.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا