Do you want to publish a course? Click here

Performance-Efficiency Trade-offs in Unsupervised Pre-training for Speech Recognition

109   0   0.0 ( 0 )
 Added by Felix Wu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

This paper is a study of performance-efficiency trade-offs in pre-trained models for automatic speech recognition (ASR). We focus on wav2vec 2.0, and formalize several architecture designs that influence both the model performance and its efficiency. Putting together all our observations, we introduce SEW (Squeezed and Efficient Wav2vec), a pre-trained model architecture with significant improvements along both performance and efficiency dimensions across a variety of training setups. For example, under the 100h-960h semi-supervised setup on LibriSpeech, SEW achieves a 1.9x inference speedup compared to wav2vec 2.0, with a 13.5% relative reduction in word error rate. With a similar inference time, SEW reduces word error rate by 25-50% across different model sizes.



rate research

Read More

This paper presents XLSR which learns cross-lingual speech representations by pretraining a single model from the raw waveform of speech in multiple languages. We build on wav2vec 2.0 which is trained by solving a contrastive task over masked latent speech representations and jointly learns a quantization of the latents shared across languages. The resulting model is fine-tuned on labeled data and experiments show that cross-lingual pretraining significantly outperforms monolingual pretraining. On the CommonVoice benchmark, XLSR shows a relative phoneme error rate reduction of 72% compared to the best known results. On BABEL, our approach improves word error rate by 16% relative compared to a comparable system. Our approach enables a single multilingual speech recognition model which is competitive to strong individual models. Analysis shows that the latent discrete speech representations are shared across languages with increased sharing for related languages. We hope to catalyze research in low-resource speech understanding by releasing XLSR-53, a large model pretrained in 53 languages.
Deep reinforcement learning (deep RL) is a combination of deep learning with reinforcement learning principles to create efficient methods that can learn by interacting with its environment. This led to breakthroughs in many complex tasks that were previously difficult to solve. However, deep RL requires a large amount of training time that makes it difficult to use in various real-life applications like human-computer interaction (HCI). Therefore, in this paper, we study pre-training in deep RL to reduce the training time and improve the performance in speech recognition, a popular application of HCI. We achieve significantly improved performance in less time on a publicly available speech command recognition dataset.
The width of a neural network matters since increasing the width will necessarily increase the model capacity. However, the performance of a network does not improve linearly with the width and soon gets saturated. In this case, we argue that increasing the number of networks (ensemble) can achieve better accuracy-efficiency trade-offs than purely increasing the width. To prove it, one large network is divided into several small ones regarding its parameters and regularization components. Each of these small networks has a fraction of the original ones parameters. We then train these small networks together and make them see various views of the same data to increase their diversity. During this co-training process, networks can also learn from each other. As a result, small networks can achieve better ensemble performance than the large one with few or no extra parameters or FLOPs. Small networks can also achieve faster inference speed than the large one by concurrent running on different devices. We validate our argument with 8 different neural architectures on common benchmarks through extensive experiments. The code is available at url{https://github.com/mzhaoshuai/Divide-and-Co-training}.
This paper explores the use of adversarial examples in training speech recognition systems to increase robustness of deep neural network acoustic models. During training, the fast gradient sign method is used to generate adversarial examples augmenting the original training data. Different from conventional data augmentation based on data transformations, the examples are dynamically generated based on current acoustic model parameters. We assess the impact of adversarial data augmentation in experiments on the Aurora-4 and CHiME-4 single-channel tasks, showing improved robustness against noise and channel variation. Further improvement is obtained when combining adversarial examples with teacher/student training, leading to a 23% relative word error rate reduction on Aurora-4.
Voice-controlled house-hold devices, like Amazon Echo or Google Home, face the problem of performing speech recognition of device-directed speech in the presence of interfering background speech, i.e., background noise and interfering speech from another person or media device in proximity need to be ignored. We propose two end-to-end models to tackle this problem with information extracted from the anchored segment. The anchored segment refers to the wake-up word part of an audio stream, which contains valuable speaker information that can be used to suppress interfering speech and background noise. The first method is called Multi-source Attention where the attention mechanism takes both the speaker information and decoder state into consideration. The second method directly learns a frame-level mask on top of the encoder output. We also explore a multi-task learning setup where we use the ground truth of the mask to guide the learner. Given that audio data with interfering speech is rare in our training data set, we also propose a way to synthesize noisy speech from clean speech to mitigate the mismatch between training and test data. Our proposed methods show up to 15% relative reduction in WER for Amazon Alexa live data with interfering background speech without significantly degrading on clean speech.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا