Do you want to publish a course? Click here

Information Cocoons in Online Navigation

250   0   0.0 ( 0 )
 Added by Tao Zhou
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Social media and online navigation bring us enjoyable experience in accessing information, and simultaneously create information cocoons (ICs) in which we are unconsciously trapped with limited and biased information. We provide a formal definition of IC in the scenario of online navigation. Subsequently, by analyzing real recommendation networks extracted from Science, PNAS and Amazon websites, and testing mainstream algorithms in disparate recommender systems, we demonstrate that similarity-based recommendation techniques result in ICs, which suppress the system navigability by hundreds of times. We further propose a flexible recommendation strategy that solves the IC-induced problem and improves retrieval accuracy in navigation, demonstrated by simulations on real data and online experiments on the largest video website in China.



rate research

Read More

We propose here two new recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three relevant data sets, and we compare their performance with several recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow to attain an improvement of performances of up to 20% with respect to existing non-parametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we studied how an increasing presence of random links in the network affects the recommendation scores, and we found that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.
Our opinions, which things we like or dislike, depend on the opinions of those around us. Nowadays, we are influenced by the opinions of online strangers, expressed in comments and ratings on online platforms. Here, we perform novel academic A/B testing experiments with over 2,500 participants to measure the extent of that influence. In our experiments, the participants watch and evaluate videos on mirror proxies of YouTube and Vimeo. We control the comments and ratings that are shown underneath each of these videos. Our study shows that from 5$%$ up to 40$%$ of subjects adopt the majority opinion of strangers expressed in the comments. Using Bayes theorem, we derive a flexible and interpretable family of models of social influence, in which each individual forms posterior opinions stochastically following a logit model. The variants of our mixture model that maximize Akaike information criterion represent two sub-populations, i.e., non-influenceable and influenceable individuals. The prior opinions of the non-influenceable individuals are strongly correlated with the external opinions and have low standard error, whereas the prior opinions of influenceable individuals have high standard error and become correlated with the external opinions due to social influence. Our findings suggest that opinions are random variables updated via Bayes rule whose standard deviation is correlated with opinion influenceability. Based on these findings, we discuss how to hinder opinion manipulation and misinformation diffusion in the online realm.
Folksonomies provide a rich source of data to study social patterns taking place on the World Wide Web. Here we study the temporal patterns of users tagging activity. We show that the statistical properties of inter-arrival times between subsequent tagging events cannot be explained without taking into account correlation in users behaviors. This shows that social interaction in collaborative tagging communities shapes the evolution of folksonomies. A consensus formation process involving the usage of a small number of tags for a given resources is observed through a numerical and analytical analysis of some well-known folksonomy datasets.
A major goal of dynamical systems theory is the search for simplified descriptions of the dynamics of a large number of interacting states. For overwhelmingly complex dynamical systems, the derivation of a reduced description on the entire dynamics at once is computationally infeasible. Other complex systems are so expansive that despite the continual onslaught of new data only partial information is available. To address this challenge, we define and optimise for a local quality function severability for measuring the dynamical coherency of a set of states over time. The theoretical underpinnings of severability lie in our local adaptation of the Simon-Ando-Fisher time-scale separation theorem, which formalises the intuition of local wells in the Markov landscape of a dynamical process, or the separation between a microscopic and a macroscopic dynamics. Finally, we demonstrate the practical relevance of severability by applying it to examples drawn from power networks, image segmentation, social networks, metabolic networks, and word association.
Link and sign prediction in complex networks bring great help to decision-making and recommender systems, such as in predicting potential relationships or relative status levels. Many previous studies focused on designing the special algorithms to perform either link prediction or sign prediction. In this work, we propose an effective model integration algorithm consisting of network embedding, network feature engineering, and an integrated classifier, which can perform the link and sign prediction in the same framework. Network embedding can accurately represent the characteristics of topological structures and cooperate with the powerful network feature engineering and integrated classifier can achieve better prediction. Experiments on several datasets show that the proposed model can achieve state-of-the-art or competitive performance for both link and sign prediction in spite of its generality. Interestingly, we find that using only very low network embedding dimension can generate high prediction performance, which can significantly reduce the computational overhead during training and prediction. This study offers a powerful methodology for multi-task prediction in complex networks.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا