Do you want to publish a course? Click here

Hybrid recommendation methods in complex networks

242   0   0.0 ( 0 )
 Added by Vincenzo Nicosia
 Publication date 2014
and research's language is English




Ask ChatGPT about the research

We propose here two new recommendation methods, based on the appropriate normalization of already existing similarity measures, and on the convex combination of the recommendation scores derived from similarity between users and between objects. We validate the proposed measures on three relevant data sets, and we compare their performance with several recommendation systems recently proposed in the literature. We show that the proposed similarity measures allow to attain an improvement of performances of up to 20% with respect to existing non-parametric methods, and that the accuracy of a recommendation can vary widely from one specific bipartite network to another, which suggests that a careful choice of the most suitable method is highly relevant for an effective recommendation on a given system. Finally, we studied how an increasing presence of random links in the network affects the recommendation scores, and we found that one of the two recommendation algorithms introduced here can systematically outperform the others in noisy data sets.



rate research

Read More

Link and sign prediction in complex networks bring great help to decision-making and recommender systems, such as in predicting potential relationships or relative status levels. Many previous studies focused on designing the special algorithms to perform either link prediction or sign prediction. In this work, we propose an effective model integration algorithm consisting of network embedding, network feature engineering, and an integrated classifier, which can perform the link and sign prediction in the same framework. Network embedding can accurately represent the characteristics of topological structures and cooperate with the powerful network feature engineering and integrated classifier can achieve better prediction. Experiments on several datasets show that the proposed model can achieve state-of-the-art or competitive performance for both link and sign prediction in spite of its generality. Interestingly, we find that using only very low network embedding dimension can generate high prediction performance, which can significantly reduce the computational overhead during training and prediction. This study offers a powerful methodology for multi-task prediction in complex networks.
In recent years the research community has accumulated overwhelming evidence for the emergence of complex and heterogeneous connectivity patterns in a wide range of biological and sociotechnical systems. The complex properties of real-world networks have a profound impact on the behavior of equilibrium and nonequilibrium phenomena occurring in various systems, and the study of epidemic spreading is central to our understanding of the unfolding of dynamical processes in complex networks. The theoretical analysis of epidemic spreading in heterogeneous networks requires the development of novel analytical frameworks, and it has produced results of conceptual and practical relevance. A coherent and comprehensive review of the vast research activity concerning epidemic processes is presented, detailing the successful theoretical approaches as well as making their limits and assumptions clear. Physicists, mathematicians, epidemiologists, computer, and social scientists share a common interest in studying epidemic spreading and rely on similar models for the description of the diffusion of pathogens, knowledge, and innovation. For this reason, while focusing on the main results and the paradigmatic models in infectious disease modeling, the major results concerning generalized social contagion processes are also presented. Finally, the research activity at the forefront in the study of epidemic spreading in coevolving, coupled, and time-varying networks is reported.
A major goal of dynamical systems theory is the search for simplified descriptions of the dynamics of a large number of interacting states. For overwhelmingly complex dynamical systems, the derivation of a reduced description on the entire dynamics at once is computationally infeasible. Other complex systems are so expansive that despite the continual onslaught of new data only partial information is available. To address this challenge, we define and optimise for a local quality function severability for measuring the dynamical coherency of a set of states over time. The theoretical underpinnings of severability lie in our local adaptation of the Simon-Ando-Fisher time-scale separation theorem, which formalises the intuition of local wells in the Markov landscape of a dynamical process, or the separation between a microscopic and a macroscopic dynamics. Finally, we demonstrate the practical relevance of severability by applying it to examples drawn from power networks, image segmentation, social networks, metabolic networks, and word association.
We propose a bare-bones stochastic model that takes into account both the geographical distribution of people within a country and their complex network of connections. The model, which is designed to give rise to a scale-free network of social connections and to visually resemble the geographical spread seen in satellite pictures of the Earth at night, gives rise to a power-law distribution for the ranking of cities by population size (but for the largest cities) and reflects the notion that highly connected individuals tend to live in highly populated areas. It also yields some interesting insights regarding Gibrats law for the rates of city growth (by population size), in partial support of the findings in a recent analysis of real data [Rozenfeld et al., Proc. Natl. Acad. Sci. U.S.A. 105, 18702 (2008)]. The model produces a nontrivial relation between city population and city population density and a superlinear relationship between social connectivity and city population, both of which seem quite in line with real data.
Controlling complex networks is of paramount importance in science and engineering. Despite the recent development of structural-controllability theory, we continue to lack a framework to control undirected complex networks, especially given link weights. Here we introduce an exact-controllability paradigm based on the maximum multiplicity to identify the minimum set of driver nodes required to achieve full control of networks with arbitrary structures and link-weight distributions. The framework reproduces the structural controllability of directed networks characterized by structural matrices. We explore the controllability of a large number of real and model networks, finding that dense networks with identical weights are difficult to be controlled. An efficient and accurate tool is offered to assess the controllability of large sparse and dense networks. The exact-controllability framework enables a comprehensive understanding of the impact of network properties on controllability, a fundamental problem towards our ultimate control of complex systems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا