No Arabic abstract
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
Objective Bayesian inference procedures are derived for the parameters of the multivariate random effects model generalized to elliptically contoured distributions. The posterior for the overall mean vector and the between-study covariance matrix is deduced by assigning two noninformative priors to the model parameter, namely the Berger and Bernardo reference prior and the Jeffreys prior, whose analytical expressions are obtained under weak distributional assumptions. It is shown that the only condition needed for the posterior to be proper is that the sample size is larger than the dimension of the data-generating model, independently of the class of elliptically contoured distributions used in the definition of the generalized multivariate random effects model. The theoretical findings of the paper are applied to real data consisting of ten studies about the effectiveness of hypertension treatment for reducing blood pressure where the treatment effects on both the systolic blood pressure and diastolic blood pressure are investigated.
For more than a century, fingerprints have been used with considerable success to identify criminals or verify the identity of individuals. The categorical conclusion scheme used by fingerprint examiners, and more generally the inference process followed by forensic scientists, have been heavily criticised in the scientific and legal literature. Instead, scholars have proposed to characterise the weight of forensic evidence using the Bayes factor as the key element of the inference process. In forensic science, quantifying the magnitude of support is equally as important as determining which model is supported. Unfortunately, the complexity of fingerprint patterns render likelihood-based inference impossible. In this paper, we use an Approximate Bayesian Computation model selection algorithm to quantify the weight of fingerprint evidence. We supplement the ABC algorithm using a Receiver Operating Characteristic curve to mitigate the effect of the curse of dimensionality. Our modified algorithm is computationally efficient and makes it easier to monitor convergence as the number of simulations increase. We use our method to quantify the weight of fingerprint evidence in forensic science, but we note that it can be applied to any other forensic pattern evidence.
We propose a novel Bayesian optimisation procedure for outlier detection in the Capital Asset Pricing Model. We use a parametric product partition model to robustly estimate the systematic risk of an asset. We assume that the returns follow independent normal distributions and we impose a partition structure on the parameters of interest. The partition structure imposed on the parameters induces a corresponding clustering of the returns. We identify via an optimisation procedure the partition that best separates standard observations from the atypical ones. The methodology is illustrated with reference to a real data set, for which we also provide a microeconomic interpretation of the detected outliers.
Smart metering infrastructures collect data almost continuously in the form of fine-grained long time series. These massive time series often have common daily patterns that are repeated between similar days or seasons and shared between grouped meters. Within this context, we propose a method to highlight individuals with abnormal daily dependency patterns, which we term evolution outliers. To this end, we approach the problem from the standpoint of Functional Data Analysis (FDA), by treating each daily record as a function or curve. We then focus on the morphological aspects of the observed curves, such as daily magnitude, daily shape, derivatives, and inter-day evolution. The proposed method for evolution outliers relies on the concept of functional depth, which has been a cornerstone in the literature of FDA to build shape and magnitude outlier detection methods. In conjunction with our evolution outlier proposal, these methods provide an outlier detection toolbox for smart meter data that covers a wide palette of functional outliers classes. We illustrate the outlier identification ability of this toolbox using actual smart metering data corresponding to photovoltaic energy generation and circuit voltage records.
A composite likelihood is a non-genuine likelihood function that allows to make inference on limited aspects of a model, such as marginal or conditional distributions. Composite likelihoods are not proper likelihoods and need therefore calibration for their use in inference, from both a frequentist and a Bayesian perspective. The maximizer to the composite likelihood can serve as an estimator and its variance is assessed by means of a suitably defined sandwich matrix. In the Bayesian setting, the composite likelihood can be adjusted by means of magnitude and curvature methods. Magnitude methods imply raising the likelihood to a constant, while curvature methods imply evaluating the likelihood at a different point by translating, rescaling and rotating the parameter vector. Some authors argue that curvature methods are more reliable in general, but others proved that magnitude methods are sufficient to recover, for instance, the null distribution of a test statistic. We propose a simple calibration for the marginal posterior distribution of a scalar parameter of interest which is invariant to monotonic and smooth transformations. This can be enough for instance in medical statistics, where a single scalar effect measure is often the target.