Do you want to publish a course? Click here

Objective Bayesian meta-analysis based on generalized multivariate random effects model

303   0   0.0 ( 0 )
 Added by Olha Bodnar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Objective Bayesian inference procedures are derived for the parameters of the multivariate random effects model generalized to elliptically contoured distributions. The posterior for the overall mean vector and the between-study covariance matrix is deduced by assigning two noninformative priors to the model parameter, namely the Berger and Bernardo reference prior and the Jeffreys prior, whose analytical expressions are obtained under weak distributional assumptions. It is shown that the only condition needed for the posterior to be proper is that the sample size is larger than the dimension of the data-generating model, independently of the class of elliptically contoured distributions used in the definition of the generalized multivariate random effects model. The theoretical findings of the paper are applied to real data consisting of ten studies about the effectiveness of hypertension treatment for reducing blood pressure where the treatment effects on both the systolic blood pressure and diastolic blood pressure are investigated.



rate research

Read More

94 - Ruth Heller , Yair Heller 2016
For testing two random vectors for independence, we consider testing whether the distance of one vector from a center point is independent from the distance of the other vector from a center point by a univariate test. In this paper we provide conditions under which it is enough to have a consistent univariate test of independence on the distances to guarantee that the power to detect dependence between the random vectors increases to one, as the sample size increases. These conditions turn out to be minimal. If the univariate test is distribution-free, the multivariate test will also be distribution-free. If we consider multiple center points and aggregate the center-specific univariate tests, the power may be further improved, and the resulting multivariate test may be distribution-free for specific aggregation methods (if the univariate test is distribution-free). We show that several multivariate tests recently proposed in the literature can be viewed as instances of this general approach.
Gaussian graphical models (GGMs) are well-established tools for probabilistic exploration of dependence structures using precision matrices. We develop a Bayesian method to incorporate covariate information in this GGMs setup in a nonlinear seemingly unrelated regression framework. We propose a joint predictor and graph selection model and develop an efficient collapsed Gibbs sampler algorithm to search the joint model space. Furthermore, we investigate its theoretical variable selection properties. We demonstrate our method on a variety of simulated data, concluding with a real data set from the TCPA project.
Modeling of longitudinal data often requires diffusion models that incorporate overall time-dependent, nonlinear dynamics of multiple components and provide sufficient flexibility for subject-specific modeling. This complexity challenges parameter inference and approximations are inevitable. We propose a method for approximate maximum-likelihood parameter estimation in multivariate time-inhomogeneous diffusions, where subject-specific flexibility is accounted for by incorporation of multidimensional mixed effects and covariates. We consider $N$ multidimensional independent diffusions $X^i = (X^i_t)_{0leq tleq T^i}, 1leq ileq N$, with common overall model structure and unknown fixed-effects parameter $mu$. Their dynamics differ by the subject-specific random effect $phi^i$ in the drift and possibly by (known) covariate information, different initial conditions and observation times and duration. The distribution of $phi^i$ is parametrized by an unknown $vartheta$ and $theta = (mu, vartheta)$ is the target of statistical inference. Its maximum likelihood estimator is derived from the continuous-time likelihood. We prove consistency and asymptotic normality of $hat{theta}_N$ when the number $N$ of subjects goes to infinity using standard techniques and consider the more general concept of local asymptotic normality for less regular models. The bias induced by time-discretization of sufficient statistics is investigated. We discuss verification of conditions and investigate parameter estimation and hypothesis testing in simulations.
Small study effects occur when smaller studies show different, often larger, treatment effects than large ones, which may threaten the validity of systematic reviews and meta-analyses. The most well-known reasons for small study effects include publication bias, outcome reporting bias and clinical heterogeneity. Methods to account for small study effects in univariate meta-analysis have been extensively studied. However, detecting small study effects in a multivariate meta-analysis setting remains an untouched research area. One of the complications is that different types of selection processes can be involved in the reporting of multivariate outcomes. For example, some studies may be completely unpublished while others may selectively report multiple outcomes. In this paper, we propose a score test as an overall test of small study effects in multivariate meta-analysis. Two detailed case studies are given to demonstrate the advantage of the proposed test over various naive applications of univariate tests in practice. Through simulation studies, the proposed test is found to retain nominal Type I error with considerable power in moderate sample size settings. Finally, we also evaluate the concordance between the proposed test with the naive application of univariate tests by evaluating 44 systematic reviews with multiple outcomes from the Cochrane Database.
In a network meta-analysis, some of the collected studies may deviate markedly from the others, for example having very unusual effect sizes. These deviating studies can be regarded as outlying with respect to the rest of the network and can be influential on the pooled results. Thus, it could be inappropriate to synthesize those studies without further investigation. In this paper, we propose two Bayesian methods to detect outliers in a network meta-analysis via: (a) a mean-shifted outlier model and (b), posterior predictive p-values constructed from ad-hoc discrepancy measures. The former method uses Bayes factors to formally test each study against outliers while the latter provides a score of outlyingness for each study in the network, which allows to numerically quantify the uncertainty associated with being outlier. Furthermore, we present a simple method based on informative priors as part of the network meta-analysis model to down-weight the detected outliers. We conduct extensive simulations to evaluate the effectiveness of the proposed methodology while comparing it to some alternative, available outlier diagnostic tools. Two real networks of interventions are then used to demonstrate our methods in practice.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا