Do you want to publish a course? Click here

Uncertainty-Aware Machine Translation Evaluation

275   0   0.0 ( 0 )
 Added by Taisiya Glushkova
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Several neural-based metrics have been recently proposed to evaluate machine translation quality. However, all of them resort to point estimates, which provide limited information at segment level. This is made worse as they are trained on noisy, biased and scarce human judgements, often resulting in unreliable quality predictions. In this paper, we introduce uncertainty-aware MT evaluation and analyze the trustworthiness of the predicted quality. We combine the COMET framework with two uncertainty estimation methods, Monte Carlo dropout and deep ensembles, to obtain quality scores along with confidence intervals. We compare the performance of our uncertainty-aware MT evaluation methods across multiple language pairs from the QT21 dataset and the WMT20 metrics task, augmented with MQM annotations. We experiment with varying numbers of references and further discuss the usefulness of uncertainty-aware quality estimation (without references) to flag possibly critical translation mistakes.



rate research

Read More

The high-quality translation results produced by machine translation (MT) systems still pose a huge challenge for automatic evaluation. Current MT evaluation pays the same attention to each sentence component, while the questions of real-world examinations (e.g., university examinations) have different difficulties and weightings. In this paper, we propose a novel difficulty-aware MT evaluation metric, expanding the evaluation dimension by taking translation difficulty into consideration. A translation that fails to be predicted by most MT systems will be treated as a difficult one and assigned a large weight in the final score function, and conversely. Experimental results on the WMT19 English-German Metrics shared tasks show that our proposed method outperforms commonly used MT metrics in terms of human correlation. In particular, our proposed method performs well even when all the MT systems are very competitive, which is when most existing metrics fail to distinguish between them. The source code is freely available at https://github.com/NLP2CT/Difficulty-Aware-MT-Evaluation.
396 - Xiangpeng Wei , Heng Yu , Yue Hu 2020
As a sequence-to-sequence generation task, neural machine translation (NMT) naturally contains intrinsic uncertainty, where a single sentence in one language has multiple valid counterparts in the other. However, the dominant methods for NMT only observe one of them from the parallel corpora for the model training but have to deal with adequate variations under the same meaning at inference. This leads to a discrepancy of the data distribution between the training and the inference phases. To address this problem, we propose uncertainty-aware semantic augmentation, which explicitly captures the universal semantic information among multiple semantically-equivalent source sentences and enhances the hidden representations with this information for better translations. Extensive experiments on various translation tasks reveal that our approach significantly outperforms the strong baselines and the existing methods.
Learning multilingual and multi-domain translation model is challenging as the heterogeneous and imbalanced data make the model converge inconsistently over different corpora in real world. One common practice is to adjust the share of each corpus in the training, so that the learning process is balanced and low-resource cases can benefit from the high resource ones. However, automatic balancing methods usually depend on the intra- and inter-dataset characteristics, which is usually agnostic or requires human priors. In this work, we propose an approach, MultiUAT, that dynamically adjusts the training data usage based on the models uncertainty on a small set of trusted clean data for multi-corpus machine translation. We experiments with two classes of uncertainty measures on multilingual (16 languages with 4 settings) and multi-domain settings (4 for in-domain and 2 for out-of-domain on English-German translation) and demonstrate our approach MultiUAT substantially outperforms its baselines, including both static and dynamic strategies. We analyze the cross-domain transfer and show the deficiency of static and similarity based methods.
We propose a simple and effective method for machine translation evaluation which does not require reference translations. Our approach is based on (1) grounding the entity mentions found in each source sentence and candidate translation against a large-scale multilingual knowledge base, and (2) measuring the recall of the grounded entities found in the candidate vs. those found in the source. Our approach achieves the highest correlation with human judgements on 9 out of the 18 language pairs from the WMT19 benchmark for evaluation without references, which is the largest number of wins for a single evaluation method on this task. On 4 language pairs, we also achieve higher correlation with human judgements than BLEU. To foster further research, we release a dataset containing 1.8 million grounded entity mentions across 18 language pairs from the WMT19 metrics track data.
The evaluation of neural machine translation systems is usually built upon generated translation of a certain decoding method (e.g., beam search) with evaluation metrics over the generated translation (e.g., BLEU). However, this evaluation framework suffers from high search errors brought by heuristic search algorithms and is limited by its nature of evaluation over one best candidate. In this paper, we propose a novel evaluation protocol, which not only avoids the effect of search errors but provides a system-level evaluation in the perspective of model ranking. In particular, our method is based on our newly proposed exact top-$k$ decoding instead of beam search. Our approach evaluates model errors by the distance between the candidate spaces scored by the references and the model respectively. Extensive experiments on WMT14 English-German demonstrate that bad ranking ability is connected to the well-known beam search curse, and state-of-the-art Transformer models are facing serious ranking errors. By evaluating various model architectures and techniques, we provide several interesting findings. Finally, to effectively approximate the exact search algorithm with same time cost as original beam search, we present a minimum heap augmented beam search algorithm.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا