Do you want to publish a course? Click here

Methane detection to 1 ppm using machine learning analysis of atmospheric pressure plasma optical emission spectra

156   0   0.0 ( 0 )
 Added by Paul Maguire
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Optical emission spectroscopy from a small-volume, 5 uL, atmospheric pressure RF-driven helium plasma was used in conjunction with Partial Least Squares Discriminant Analysis (PLS-DA) for the detection of trace concentrations of methane gas. A limit of detection of 1 ppm was obtained and sample concentrations up to 100 ppm CH4 were classified using a nine-category model. A range of algorithm enhancements were investigated including regularization, simple data segmentation and subset selection, VIP feature selection and wavelength variable compression in order to address the high dimensionality and collinearity of spectral emission data. These approaches showed the potential for significant reduction in the number of wavelength variables and the spectral resolution/bandwidth. Wavelength variable compression exhibited reliable predictive performance, with accuracy values > 97%, under more challenging multi-session train - test scenarios. Simple modelling of plasma electron energy distribution functions highlights the complex cross-sensitivities between the target methane, its dissociation products and atmospheric impurities and their impact on excitation and emission.



rate research

Read More

The proper classification of plasma regions in near-Earth space is crucial to perform unambiguous statistical studies of fundamental plasma processes such as shocks, magnetic reconnection, waves and turbulence, jets and their combinations. The majority of available studies have been performed by using human-driven methods, such as visual data selection or the application of predefined thresholds to different observable plasma quantities. While human-driven methods have allowed performing many statistical studies, these methods are often time-consuming and can introduce important biases. On the other hand, the recent availability of large, high-quality spacecraft databases, together with major advances in machine-learning algorithms, can now allow meaningful applications of machine learning to in-situ plasma data. In this study, we apply the fully convolutional neural network (FCN) deep machine-leaning algorithm to the recent Magnetospheric Multi Scale (MMS) mission data in order to classify ten key plasma regions in near-Earth space for the period 2016-2019. For this purpose, we use available intervals of time series for each such plasma region, which were labeled by using human-driven selective downlink applied to MMS burst data. We discuss several quantitative parameters to assess the accuracy of both methods. Our results indicate that the FCN method is reliable to accurately classify labeled time series data since it takes into account the dynamical features of the plasma data in each region. We also present good accuracy of the FCN method when applied to unlabeled MMS data. Finally, we show how this method used on MMS data can be extended to data from the Cluster mission, indicating that such method can be successfully applied to any in situ spacecraft plasma database.
We use a machine learning approach to identify the importance of microstructure characteristics in causing magnetization reversal in ideally structured large-grained Nd$_2$Fe$_{14}$B permanent magnets. The embedded Stoner-Wohlfarth method is used as a reduced order model for determining local switching field maps which guide the data-driven learning procedure. The predictor model is a random forest classifier which we validate by comparing with full micromagnetic simulations in the case of small granular test structures. In the course of the machine learning microstructure analysis the most important features explaining magnetization reversal were found to be the misorientation and the position of the grain within the magnet. The lowest switching fields occur near the top and bottom edges of the magnet. While the dependence of the local switching field on the grain orientation is known from theory, the influence of the position of the grain on the local coercive field strength is less obvious. As a direct result of our findings of the machine learning analysis we show that edge hardening via Dy-diffusion leads to higher coercive fields.
Advanced microscopy and/or spectroscopy tools play indispensable role in nanoscience and nanotechnology research, as it provides rich information about the growth mechanism, chemical compositions, crystallography, and other important physical and chemical properties. However, the interpretation of imaging data heavily relies on the intuition of experienced researchers. As a result, many of the deep graphical features obtained through these tools are often unused because of difficulties in processing the data and finding the correlations. Such challenges can be well addressed by deep learning. In this work, we use the optical characterization of two-dimensional (2D) materials as a case study, and demonstrate a neural-network-based algorithm for the material and thickness identification of exfoliated 2D materials with high prediction accuracy and real-time processing capability. Further analysis shows that the trained network can extract deep graphical features such as contrast, color, edges, shapes, segment sizes and their distributions, based on which we develop an ensemble approach topredict the most relevant physical properties of 2D materials. Finally, a transfer learning technique is applied to adapt the pretrained network to other applications such as identifying layer numbers of a new 2D material, or materials produced by a different synthetic approach. Our artificial-intelligence-based material characterization approach is a powerful tool that would speed up the preparation, initial characterization of 2D materials and other nanomaterials and potentially accelerate new material discoveries.
We develop a new machine learning algorithm, Via Machinae, to identify cold stellar streams in data from the Gaia telescope. Via Machinae is based on ANODE, a general method that uses conditional density estimation and sideband interpolation to detect local overdensities in the data in a model agnostic way. By applying ANODE to the positions, proper motions, and photometry of stars observed by Gaia, Via Machinae obtains a collection of those stars deemed most likely to belong to a stellar stream. We further apply an automated line-finding method based on the Hough transform to search for line-like features in patches of the sky. In this paper, we describe the Via Machinae algorithm in detail and demonstrate our approach on the prominent stream GD-1. A companion paper contains our identification of other known stellar streams as well as new stellar stream candidates from Via Machinae. Though some parts of the algorithm are tuned to increase sensitivity to cold streams, the Via Machinae technique itself does not rely on astrophysical assumptions, such as the potential of the Milky Way or stellar isochrones. This flexibility suggests that it may have further applications in identifying other anomalous structures within the Gaia dataset, for example debris flow and globular clusters.
This article presents an original methodology for the prediction of steady turbulent aerodynamic fields. Due to the important computational cost of high-fidelity aerodynamic simulations, a surrogate model is employed to cope with the significant variations of several inflow conditions. Specifically, the Local Decomposition Method presented in this paper has been derived to capture nonlinear behaviors resulting from the presence of continuous and discontinuous signals. A combination of unsupervised and supervised learning algorithms is coupled with a physical criterion. It decomposes automatically the input parameter space, from a limited number of high-fidelity simulations, into subspaces. These latter correspond to different flow regimes. A measure of entropy identifies the subspace with the expected strongest non-linear behavior allowing to perform an active resampling on this low-dimensional structure. Local reduced-order models are built on each subspace using Proper Orthogonal Decomposition coupled with a multivariate interpolation tool. The methodology is assessed on the turbulent two-dimensional flow around the RAE2822 transonic airfoil. It exhibits a significant improvement in term of prediction accuracy for the Local Decomposition Method compared with the classical method of surrogate modeling for cases with different flow regimes.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا