No Arabic abstract
We explore the dynamical structure of the protoplanetary disks surrounding HD 163296 and MWC 480 as part of the Molecules with ALMA at Planet Forming Scales (MAPS) large program. Using the $J = 2-1$ transitions of $^{12}$CO, $^{13}$CO and C$^{18}$O imaged at spatial resolutions of $sim 0.^{prime prime}15$ and with a channel spacing of $200$ ${rm m,s^{-1}}$, we find perturbations from Keplerian rotation in the projected velocity fields of both disks ($lesssim!5%$ of the local Keplerian velocity), suggestive of large-scale (10s of au in size), coherent flows. By accounting for the azimuthal dependence on the projection of the velocity field, the velocity fields were decomposed into azimuthally averaged orthogonal components, $v_{phi}$, $v_r$ and $v_z$. Using the optically thick $^{12}$CO emission as a probe of the gas temperature, local variations of $approx! 3$ K ($approx! 5 %$ relative changes) were observed and found to be associated with the kinematic substructures. The MWC 480 disk hosts a suite of tightly wound spiral arms. The spirals arms, in conjunction with the highly localized perturbations in the gas velocity structure (kinematic planetary signatures), indicate a giant planet, $sim! 1$ $M_{rm Jup}$, at a radius of $approx 245$ au. In the disk of HD 163296, the kinematic substructures were consistent with previous studies of Pinte et al. (2018a) and Teague et al. (2018a) advocating for multiple $sim! 1$ $M_{rm Jup}$ planets embedded in the disk. These results demonstrate that molecular line observations that characterize the dynamical structure of disks can be used to search for the signatures of embedded planets. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Understanding the temperature structure of protoplanetary disks is key to interpreting observations, predicting the physical and chemical evolution of the disk, and modeling planet formation processes. In this study, we constrain the two-dimensional thermal structure of the disk around Herbig Ae star HD 163296. Using the thermo-chemical code RAC2D, we derive a thermal structure that reproduces spatially resolved ALMA observations (~0.12 arcsec (13 au) - 0.25 arcsec (26 au)) of CO J = 2-1, 13CO J = 1-0, 2-1, C18O J = 1-0, 2-1, and C17O J = 1-0, the HD J = 1-0 flux upper limit, the spectral energy distribution (SED), and continuum morphology. The final model incorporates both a radial depletion of CO motivated by a time scale shorter than typical CO gas-phase chemistry (0.01 Myr) and an enhanced temperature near the surface layer of the the inner disk (z/r <= 0.21). This model agrees with the majority of the empirically derived temperatures and observed emitting surfaces derived from the J = 2-1 CO observations. We find an upper limit for the disk mass of 0.35 Msun, using the upper limit of the HD J = 1-0 and J = 2-1 flux. With our final thermal structure, we explore the impact that gaps have on the temperature structure constrained by observations of the resolved gaps. Adding a large gap in the gas and small dust additionally increases gas temperature in the gap by only 5-10%. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
The Molecules with ALMA at Planet-forming Scales (MAPS) Large Program provides a detailed, high resolution (${sim}$10-20 au) view of molecular line emission in five protoplanetary disks at spatial scales relevant for planet formation. Here, we present a systematic analysis of chemical substructures in 18 molecular lines toward the MAPS sources: IM Lup, GM Aur, AS 209, HD 163296, and MWC 480. We identify more than 200 chemical substructures, which are found at nearly all radii where line emission is detected. A wide diversity of radial morphologies - including rings, gaps, and plateaus - is observed both within each disk and across the MAPS sample. This diversity in line emission profiles is also present in the innermost 50 au. Overall, this suggests that planets form in varied chemical environments both across disks and at different radii within the same disk. Interior to 150 au, the majority of chemical substructures across the MAPS disks are spatially coincident with substructures in the millimeter continuum, indicative of physical and chemical links between the disk midplane and warm, elevated molecular emission layers. Some chemical substructures in the inner disk and most chemical substructures exterior to 150 au cannot be directly linked to dust substructure, however, which indicates that there are also other causes of chemical substructures, such as snowlines, gradients in UV photon fluxes, ionization, and radially-varying elemental ratios. This implies that chemical substructures could be developed into powerful probes of different disk characteristics, in addition to influencing the environments within which planets assemble. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Here we present high resolution (15-24 au) observations of CO isotopologue lines from the Molecules with ALMA on Planet-forming Scales (MAPS) ALMA Large Program. Our analysis employs $^{13}$CO and C$^{18}$O ($J$=2-1), (1-0), and C$^{17}$O (1-0) line observations of five protoplanetary disks. We retrieve CO gas density distributions, using three independent methods: (1) a thermo-chemical modeling framework based on the CO data, the broadband spectral energy distribution, and the mm-continuum emission; (2) an empirical temperature distribution based on optically thick CO lines; and (3) a direct fit to the C$^{17}$O hyperfine lines. Results from these methods generally show excellent agreement. The CO gas column density profiles of the five disks show significant variations in the absolute value and the radial shape. Assuming a gas-to-dust mass ratio of 100, all five disks have a global CO-to-H$_2$ abundance of 10-100 times lower than the ISM ratio. The CO gas distributions between 150-400 au match well with models of viscous disks, supporting the long-standing theory. CO gas gaps appear to be correlated with continuum gap locations, but some deep continuum gaps do not have corresponding CO gaps. The relative depths of CO and dust gaps are generally consistent with predictions of planet-disk interactions, but some CO gaps are 5-10 times shallower than predictions based on dust gaps. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
During the main phase of evolution of a protoplanetary disk, accretion regulates the inner-disk properties, such as the temperature and mass distribution, and in turn, the physical conditions associated with planet formation. The driving mechanism behind accretion remains uncertain; however, one promising mechanism is the removal of a fraction of angular momentum via a magnetohydrodynamic (MHD) disk wind launched from the inner tens of astronomical units of the disk. This paper utilizes CO isotopologue emission to study the unique molecular outflow originating from the HD 163296 protoplanetary disk obtained with the Atacama Large Millimeter/submillimeter Array. HD~163296 is one of the most well-studied Class II disks and is proposed to host multiple gas-giant planets. We robustly detect the large-scale rotating outflow in the 12CO J=2-1 and the 13CO J=2-1 and J=1-0 transitions. We constrain the kinematics, the excitation temperature of the molecular gas, and the mass-loss rate. The high ratio of the rates of ejection to accretion (5 - 50), together with the rotation signatures of the flow, provides solid evidence for an MHD disk wind. We find that the angular momentum removal by the wind is sufficient to drive accretion through the inner region of the disk; therefore, accretion driven by turbulent viscosity is not required to explain HD~163296s accretion. The low temperature of the molecular wind and its overall kinematics suggest that the MHD disk wind could be perturbed and shocked by the previously observed high-velocity atomic jet. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.
Constraining dust properties of planet-forming disks via high angular resolution observations is fundamental to understanding how solids are trapped in substructures and how dust growth may be favored or accelerated therein. We use ALMA dust continuum observations of the Molecules with ALMA at Planet-forming Scales (MAPS) disks and explore a large parameter space to constrain the radial distribution of solid mass and maximum grain size in each disk, including or excluding dust scattering. In the nonscattering model, the dust surface density and maximum grain size profiles decrease from the inner disks to the outer disks, with local maxima at the bright ring locations, as expected from dust trapping models. The inferred maximum grain sizes from the inner to outer disks decrease from ~1 cm to 1 mm. For IM Lup, HD 163296, and MWC 480 in the scattering model, two solutions are compatible with their observed inner disk emission: one solution corresponding to a maximum grain size of a few millimeters (similar to the nonscattering model), and the other corresponding to a few hundred micrometer sizes. Based on the estimated Toomre parameter, only IM Lup -- which shows a prominent spiral morphology in millimeter dust -- is found to be gravitationally unstable. The estimated maximum Stokes number in all the disks lies between 0.01 and 0.3, and the estimated turbulence parameters in the rings of AS 209 and HD 163296 are close to the threshold where dust growth is limited by turbulent fragmentation. This paper is part of the MAPS special issue of the Astrophysical Journal Supplement.