Do you want to publish a course? Click here

Asymptotic analysis of the stress concentration between two adjacent stiff inclusions in all dimensions

94   0   0.0 ( 0 )
 Added by Zhiwen Zhao
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

In the region between two closely located stiff inclusions, the stress, which is the gradient of a solution to the Lam{e} system with partially infinite coefficients, may become arbitrarily large as the distance between interfacial boundaries of inclusions tends to zero. The primary aim of this paper is to give a sharp description in terms of the asymptotic behavior of the stress concentration, as the distance between interfacial boundaries of inclusions goes to zero. For that purpose we capture all the blow-up factor matrices, whose elements comprise of some certain integrals of the solutions to the case when two inclusions are touching. Then we are able to establish the asymptotic formulas of the stress concentration in the presence of two close-to-touching $m$-convex inclusions in all dimensions. Furthermore, an example of curvilinear squares with rounded-off angles is also presented for future application in numerical computations and simulations.



rate research

Read More

We consider the Lam{e} system arising from high-contrast composite materials whose inclusions (fibers) are nearly touching the matrix boundary. The stress, which is the gradient of the solution, always concentrates highly in the narrow regions between the inclusions and the external boundary. This paper aims to provide a complete characterization in terms of the singularities of the stress concentration by accurately capturing all the blow-up factor matrices and making clear the dependence on the Lam{e} constants and the curvature parameters of geometry. Moreover, the precise asymptotic expansions of the stress concentration are also presented in the presence of a strictly convex inclusion close to touching the external boundary for the convenience of application.
We study the stress concentration, which is the gradient of the solution, when two smooth inclusions are closely located in a possibly anisotropic medium. The governing equation may be degenerate of $p-$Laplace type, with $1<p leq N$. We prove optimal $L^infty$ estimates for the blow-up of the gradient of the solution as the distance between the inclusions tends to zero.
84 - Zhiwen Zhao , Xia Hao 2021
In high-contrast composites, if an inclusion is in close proximity to the matrix boundary, then the stress, which is represented by the gradient of a solution to the Lam{e} systems of linear elasticity, may exhibits the singularities with respect to the distance $varepsilon$ between them. In this paper, we establish the asymptotic formulas of the stress concentration for core-shell geometry with $C^{1,alpha}$ boundaries in all dimensions by precisely capturing all the blow-up factor matrices, as the distance $varepsilon$ between interfacial boundaries of a core and a surrounding shell goes to zero. Further, a direct application of these blow-up factor matrices gives the optimal gradient estimates.
167 - Xia Hao , Zhiwen Zhao 2021
In this paper, we establish the asymptotic expressions for the gradient of a solution to the Lam{e} systems with partially infinity coefficients as two rigid $C^{1,gamma}$-inclusions are very close but not touching. The novelty of these asymptotics, which improve and make complete the previous results of Chen-Li (JFA 2021), lies in that they show the optimality of the gradient blow-up rate in dimensions greater than two.
We perform the asymptotic analysis of parabolic equations with stiff transport terms. This kind of problem occurs, for example, in collisional gyrokinetic theory for tokamak plasmas, where the velocity diffusion of the collision mechanism is dominated by the velocity advection along the Laplace force corresponding to a strong magnetic field. This work appeal to the filtering techniques. Removing the fast oscillations associated to the singular transport operator, leads to a stable family of profiles. The limit profile comes by averaging with respect to the fast time variable, and still satisfies a parabolic model, whose diffusion matrix is completely characterized in terms of the original diffusion matrix and the stiff transport operator. Introducing first order correctors allows us to obtain strong convergence results, for general initial conditions (not necessarily well prepared).
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا