Do you want to publish a course? Click here

RoR: Read-over-Read for Long Document Machine Reading Comprehension

102   0   0.0 ( 0 )
 Added by Junwei Bao Doctor
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Transformer-based pre-trained models, such as BERT, have achieved remarkable results on machine reading comprehension. However, due to the constraint of encoding length (e.g., 512 WordPiece tokens), a long document is usually split into multiple chunks that are independently read. It results in the reading field being limited to individual chunks without information collaboration for long document machine reading comprehension. To address this problem, we propose RoR, a read-over-read method, which expands the reading field from chunk to document. Specifically, RoR includes a chunk reader and a document reader. The former first predicts a set of regional answers for each chunk, which are then compacted into a highly-condensed version of the original document, guaranteeing to be encoded once. The latter further predicts the global answers from this condensed document. Eventually, a voting strategy is utilized to aggregate and rerank the regional and global answers for final prediction. Extensive experiments on two benchmarks QuAC and TriviaQA demonstrate the effectiveness of RoR for long document reading. Notably, RoR ranks 1st place on the QuAC leaderboard (https://quac.ai/) at the time of submission (May 17th, 2021).



rate research

Read More

This paper considers the reading comprehension task in which multiple documents are given as input. Prior work has shown that a pipeline of retriever, reader, and reranker can improve the overall performance. However, the pipeline system is inefficient since the input is re-encoded within each module, and is unable to leverage upstream components to help downstream training. In this work, we present RE$^3$QA, a unified question answering model that combines context retrieving, reading comprehension, and answer reranking to predict the final answer. Unlike previous pipelined approaches, RE$^3$QA shares contextualized text representation across different components, and is carefully designed to use high-quality upstream outputs (e.g., retrieved context or candidate answers) for directly supervising downstream modules (e.g., the reader or the reranker). As a result, the whole network can be trained end-to-end to avoid the context inconsistency problem. Experiments show that our model outperforms the pipelined baseline and achieves state-of-the-art results on t
Recent studies on machine reading comprehension have focused on text-level understanding but have not yet reached the level of human understanding of the visual layout and content of real-world documents. In this study, we introduce a new visual machine reading comprehension dataset, named VisualMRC, wherein given a question and a document image, a machine reads and comprehends texts in the image to answer the question in natural language. Compared with existing visual question answering (VQA) datasets that contain texts in images, VisualMRC focuses more on developing natural language understanding and generation abilities. It contains 30,000+ pairs of a question and an abstractive answer for 10,000+ document images sourced from multiple domains of webpages. We also introduce a new model that extends existing sequence-to-sequence models, pre-trained with large-scale text corpora, to take into account the visual layout and content of documents. Experiments with VisualMRC show that this model outperformed the base sequence-to-sequence models and a state-of-the-art VQA model. However, its performance is still below that of humans on most automatic evaluation metrics. The dataset will facilitate research aimed at connecting vision and language understanding.
This study considers the task of machine reading at scale (MRS) wherein, given a question, a system first performs the information retrieval (IR) task of finding relevant passages in a knowledge source and then carries out the reading comprehension (RC) task of extracting an answer span from the passages. Previous MRS studies, in which the IR component was trained without considering answer spans, struggled to accurately find a small number of relevant passages from a large set of passages. In this paper, we propose a simple and effective approach that incorporates the IR and RC tasks by using supervised multi-task learning in order that the IR component can be trained by considering answer spans. Experimental results on the standard benchmark, answering SQuAD questions using the full Wikipedia as the knowledge source, showed that our model achieved state-of-the-art performance. Moreover, we thoroughly evaluated the individual contributions of our model components with our new Japanese dataset and SQuAD. The results showed significant improvements in the IR task and provided a new perspective on IR for RC: it is effective to teach which part of the passage answers the question rather than to give only a relevance score to the whole passage.
In this paper, we study machine reading comprehension (MRC) on long texts, where a model takes as inputs a lengthy document and a question and then extracts a text span from the document as an answer. State-of-the-art models tend to use a pretrained transformer model (e.g., BERT) to encode the joint contextual information of document and question. However, these transformer-based models can only take a fixed-length (e.g., 512) text as its input. To deal with even longer text inputs, previous approaches usually chunk them into equally-spaced segments and predict answers based on each segment independently without considering the information from other segments. As a result, they may form segments that fail to cover the correct answer span or retain insufficient contexts around it, which significantly degrades the performance. Moreover, they are less capable of answering questions that need cross-segment information. We propose to let a model learn to chunk in a more flexible way via reinforcement learning: a model can decide the next segment that it wants to process in either direction. We also employ recurrent mechanisms to enable information to flow across segments. Experiments on three MRC datasets -- CoQA, QuAC, and TriviaQA -- demonstrate the effectiveness of our proposed recurrent chunking mechanisms: we can obtain segments that are more likely to contain complete answers and at the same time provide sufficient contexts around the ground truth answers for better predictions.
102 - Hai Wang , Dian Yu , Kai Sun 2019
Remarkable success has been achieved in the last few years on some limited machine reading comprehension (MRC) tasks. However, it is still difficult to interpret the predictions of existing MRC models. In this paper, we focus on extracting evidence sentences that can explain or support the answers of multiple-choice MRC tasks, where the majority of answer options cannot be directly extracted from reference documents. Due to the lack of ground truth evidence sentence labels in most cases, we apply distant supervision to generate imperfect labels and then use them to train an evidence sentence extractor. To denoise the noisy labels, we apply a recently proposed deep probabilistic logic learning framework to incorporate both sentence-level and cross-sentence linguistic indicators for indirect supervision. We feed the extracted evidence sentences into existing MRC models and evaluate the end-to-end performance on three challenging multiple-choice MRC datasets: MultiRC, RACE, and DREAM, achieving comparable or better performance than the same models that take as input the full reference document. To the best of our knowledge, this is the first work extracting evidence sentences for multiple-choice MRC.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا