Do you want to publish a course? Click here

Temporal Pyramid Transformer with Multimodal Interaction for Video Question Answering

297   0   0.0 ( 0 )
 Added by Chongyang Wang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Video question answering (VideoQA) is challenging given its multimodal combination of visual understanding and natural language understanding. While existing approaches seldom leverage the appearance-motion information in the video at multiple temporal scales, the interaction between the question and the visual information for textual semantics extraction is frequently ignored. Targeting these issues, this paper proposes a novel Temporal Pyramid Transformer (TPT) model with multimodal interaction for VideoQA. The TPT model comprises two modules, namely Question-specific Transformer (QT) and Visual Inference (VI). Given the temporal pyramid constructed from a video, QT builds the question semantics from the coarse-to-fine multimodal co-occurrence between each word and the visual content. Under the guidance of such question-specific semantics, VI infers the visual clues from the local-to-global multi-level interactions between the question and the video. Within each module, we introduce a multimodal attention mechanism to aid the extraction of question-video interactions, with residual connections adopted for the information passing across different levels. Through extensive experiments on three VideoQA datasets, we demonstrate better performances of the proposed method in comparison with the state-of-the-arts.



rate research

Read More

In this work, we introduce Video Question Answering in temporal domain to infer the past, describe the present and predict the future. We present an encoder-decoder approach using Recurrent Neural Networks to learn temporal structures of videos and introduce a dual-channel ranking loss to answer multiple-choice questions. We explore approaches for finer understanding of video content using question form of fill-in-the-blank, and managed to collect 109,895 video clips with duration over 1,000 hours from TACoS, MPII-MD, MEDTest 14 datasets, while the corresponding 390,744 questions are generated from annotations. Extensive experiments demonstrate that our approach significantly outperforms the compared baselines.
In this paper, we propose a novel end-to-end trainable Video Question Answering (VideoQA) framework with three major components: 1) a new heterogeneous memory which can effectively learn global context information from appearance and motion features; 2) a redesigned question memory which helps understand the complex semantics of question and highlights queried subjects; and 3) a new multimodal fusion layer which performs multi-step reasoning by attending to relevant visual and textual hints with self-updated attention. Our VideoQA model firstly generates the global context-aware visual and textual features respectively by interacting current inputs with memory contents. After that, it makes the attentional fusion of the multimodal visual and textual representations to infer the correct answer. Multiple cycles of reasoning can be made to iteratively refine attention weights of the multimodal data and improve the final representation of the QA pair. Experimental results demonstrate our approach achieves state-of-the-art performance on four VideoQA benchmark datasets.
Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models application scenario. In this work, we leverage semantic roles derived from video descriptions to mask out certain phrases, to introduce VidQAP which poses VidQA as a fill-in-the-phrase task. To enable evaluation of answer phrases, we compute the relative improvement of the predicted answer compared to an empty string. To reduce the influence of language bias in VidQA datasets, we retrieve a video having a different answer for the same question. To facilitate research, we construct ActivityNet-SRL-QA and Charades-SRL-QA and benchmark them by extending three vision-language models. We further perform extensive analysis and ablative studies to guide future work.
Video inpainting aims to fill the given spatiotemporal holes with realistic appearance but is still a challenging task even with prosperous deep learning approaches. Recent works introduce the promising Transformer architecture into deep video inpainting and achieve better performance. However, it still suffers from synthesizing blurry texture as well as huge computational cost. Towards this end, we propose a novel Decoupled Spatial-Temporal Transformer (DSTT) for improving video inpainting with exceptional efficiency. Our proposed DSTT disentangles the task of learning spatial-temporal attention into 2 sub-tasks: one is for attending temporal object movements on different frames at same spatial locations, which is achieved by temporally-decoupled Transformer block, and the other is for attending similar background textures on same frame of all spatial positions, which is achieved by spatially-decoupled Transformer block. The interweaving stack of such two blocks makes our proposed model attend background textures and moving objects more precisely, and thus the attended plausible and temporally-coherent appearance can be propagated to fill the holes. In addition, a hierarchical encoder is adopted before the stack of Transformer blocks, for learning robust and hierarchical features that maintain multi-level local spatial structure, resulting in the more representative token vectors. Seamless combination of these two novel designs forms a better spatial-temporal attention scheme and our proposed model achieves better performance than state-of-the-art video inpainting approaches with significant boosted efficiency.
We addressed the challenging task of video question answering, which requires machines to answer questions about videos in a natural language form. Previous state-of-the-art methods attempt to apply spatio-temporal attention mechanism on video frame features without explicitly modeling the location and relations among object interaction occurred in videos. However, the relations between object interaction and their location information are very critical for both action recognition and question reasoning. In this work, we propose to represent the contents in the video as a location-aware graph by incorporating the location information of an object into the graph construction. Here, each node is associated with an object represented by its appearance and location features. Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action. As the graph is built on objects, our method is able to focus on the foreground action contents for better video question answering. Lastly, we leverage an attention mechanism to combine the output of graph convolution and encoded question features for final answer reasoning. Extensive experiments demonstrate the effectiveness of the proposed methods. Specifically, our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA, and MSVD-QA datasets. Code and pre-trained models are publicly available at: https://github.com/SunDoge/L-GCN
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا