Do you want to publish a course? Click here

Location-aware Graph Convolutional Networks for Video Question Answering

277   0   0.0 ( 0 )
 Added by Mingkui Tan
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

We addressed the challenging task of video question answering, which requires machines to answer questions about videos in a natural language form. Previous state-of-the-art methods attempt to apply spatio-temporal attention mechanism on video frame features without explicitly modeling the location and relations among object interaction occurred in videos. However, the relations between object interaction and their location information are very critical for both action recognition and question reasoning. In this work, we propose to represent the contents in the video as a location-aware graph by incorporating the location information of an object into the graph construction. Here, each node is associated with an object represented by its appearance and location features. Based on the constructed graph, we propose to use graph convolution to infer both the category and temporal locations of an action. As the graph is built on objects, our method is able to focus on the foreground action contents for better video question answering. Lastly, we leverage an attention mechanism to combine the output of graph convolution and encoded question features for final answer reasoning. Extensive experiments demonstrate the effectiveness of the proposed methods. Specifically, our method significantly outperforms state-of-the-art methods on TGIF-QA, Youtube2Text-QA, and MSVD-QA datasets. Code and pre-trained models are publicly available at: https://github.com/SunDoge/L-GCN



rate research

Read More

Video Question Answering (VidQA) evaluation metrics have been limited to a single-word answer or selecting a phrase from a fixed set of phrases. These metrics limit the VidQA models application scenario. In this work, we leverage semantic roles derived from video descriptions to mask out certain phrases, to introduce VidQAP which poses VidQA as a fill-in-the-phrase task. To enable evaluation of answer phrases, we compute the relative improvement of the predicted answer compared to an empty string. To reduce the influence of language bias in VidQA datasets, we retrieve a video having a different answer for the same question. To facilitate research, we construct ActivityNet-SRL-QA and Charades-SRL-QA and benchmark them by extending three vision-language models. We further perform extensive analysis and ablative studies to guide future work.
We propose a new attention model for video question answering. The main idea of the attention models is to locate on the most informative parts of the visual data. The attention mechanisms are quite popular these days. However, most existing visual attention mechanisms regard the question as a whole. They ignore the word-level semantics where each word can have different attentions and some words need no attention. Neither do they consider the semantic structure of the sentences. Although the Extended Soft Attention (E-SA) model for video question answering leverages the word-level attention, it performs poorly on long question sentences. In this paper, we propose the heterogeneous tree-structured memory network (HTreeMN) for video question answering. Our proposed approach is based upon the syntax parse trees of the question sentences. The HTreeMN treats the words differently where the textit{visual} words are processed with an attention module and the textit{verbal} ones not. It also utilizes the semantic structure of the sentences by combining the neighbors based on the recursive structure of the parse trees. The understandings of the words and the videos are propagated and merged from leaves to the root. Furthermore, we build a hierarchical attention mechanism to distill the attended features. We evaluate our approach on two datasets. The experimental results show the superiority of our HTreeMN model over the other attention models especially on complex questions. Our code is available on github. Our code is available at https://github.com/ZJULearning/TreeAttention
We describe a very simple bag-of-words baseline for visual question answering. This baseline concatenates the word features from the question and CNN features from the image to predict the answer. When evaluated on the challenging VQA dataset [2], it shows comparable performance to many recent approaches using recurrent neural networks. To explore the strength and weakness of the trained model, we also provide an interactive web demo and open-source code. .
89 - Daniel Vollmers 2021
Knowledge Graph Question Answering (KGQA) systems are based on machine learning algorithms, requiring thousands of question-answer pairs as training examples or natural language processing pipelines that need module fine-tuning. In this paper, we present a novel QA approach, dubbed TeBaQA. Our approach learns to answer questions based on graph isomorphisms from basic graph patterns of SPARQL queries. Learning basic graph patterns is efficient due to the small number of possible patterns. This novel paradigm reduces the amount of training data necessary to achieve state-of-the-art performance. TeBaQA also speeds up the domain adaption process by transforming the QA system development task into a much smaller and easier data compilation task. In our evaluation, TeBaQA achieves state-of-the-art performance on QALD-8 and delivers comparable results on QALD-9 and LC-QuAD v1. Additionally, we performed a fine-grained evaluation on complex queries that deal with aggregation and superlative questions as well as an ablation study, highlighting future research challenges.
Natural language processing (NLP) is at the forefront of great advances in contemporary AI, and it is arguably one of the most challenging areas of the field. At the same time, with the steady growth of quantum hardware and notable improvements towards implementations of quantum algorithms, we are approaching an era when quantum computers perform tasks that cannot be done on classical computers with a reasonable amount of resources. This provides a new range of opportunities for AI, and for NLP specifically. Earlier work has already demonstrated a potential quantum advantage for NLP in a number of manners: (i) algorithmic speedups for search-related or classification tasks, which are the most dominant tasks within NLP, (ii) exponentially large quantum state spaces allow for accommodating complex linguistic structures, (iii) novel models of meaning employing density matrices naturally model linguistic phenomena such as hyponymy and linguistic ambiguity, among others. In this work, we perform the first implementation of an NLP task on noisy intermediate-scale quantum (NISQ) hardware. Sentences are instantiated as parameterised quantum circuits. We encode word-meanings in quantum states and we explicitly account for grammatical structure, which even in mainstream NLP is not commonplace, by faithfully hard-wiring it as entangling operations. This makes our approach to quantum natural language processing (QNLP) particularly NISQ-friendly. Our novel QNLP model shows concrete promise for scalability as the quality of the quantum hardware improves in the near future.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا