No Arabic abstract
In the present work, we propose a generalization of the confidence polytopes approach for quantum state tomography (QST) to the case of quantum process tomography (QPT). Our approach allows obtaining a confidence region in the polytope form for a Choi matrix of an unknown quantum channel based on the measurement results of the corresponding QPT experiment. The method uses the improved version of the expression for confidence levels for the case of several positive operator-valued measures (POVMs). We then show how confidence polytopes can be employed for calculating confidence intervals for affine functions of quantum states (Choi matrices), such as fidelities and observables mean values, which are used both in QST and QPT settings. As we discuss this problem can be efficiently solved using linear programming tools. We also demonstrate the performance and scalability of the developed approach on the basis of simulation and experimental data collected using IBM cloud quantum processor.
We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a $d$-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only $O(d^2)$ interactive observables, as opposed to the $O(d^4)$ required for tomography of arbitrary channels. This result generalizes, so that channels with at most $q$ Kraus operators can be identified with only $O(qd^2)$ interactive observables. Slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with $q$ Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.
Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this work, we put forward a quantum machine learning algorithm which approximately encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit. We demonstrate our method by reconstructing the unitary quantum processes resulting from the quantum Hamiltonian evolution and random quantum circuits up to $8$ qubits. Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
A Bayesian approach to quantum process tomography has yet to be fully developed due to the lack of appropriate probability distributions on the space of quantum channels. Here, by associating the Choi matrix form of a completely positive, trace preserving (CPTP) map with a particular space of matrices with orthonormal columns, called a Stiefel manifold, we present two parametric probability distributions on the space of CPTP maps that enable Bayesian analysis of process tomography. The first is a probability distribution that has an average Choi matrix as a sufficient statistic. The second is a distribution resulting from binomial likelihood data that enables a simple connection to data gathered through process tomography experiments. To our knowledge these are the first examples of continuous, non-unitary random CPTP maps, that capture meaningful prior information for use in Bayesian estimation. We show how these distributions can be used for point estimation using either maximum a posteriori estimates or expected a posteriori estimates, as well as full Bayesian tomography resulting in posterior credibility intervals. This approach will enable the full power of Bayesian analysis in all forms of quantum characterization, verification, and validation.
Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measurement operators used to interrogate the system are generated by gates that have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography can not be fully corrected through oversampling or by performing a larger set of experiments. We present an alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation and measurement. In order to make the resulting optimization tractable we linearize about the target, a reasonable approximation when benchmarking a quantum computer as opposed to probing a black-box function.
We present a compressive quantum process tomography scheme that fully characterizes any rank-deficient completely-positive process with no a priori information about the process apart from the dimension of the system on which the process acts. It uses randomly-chosen input states and adaptive output von Neumann measurements. Both entangled and tensor-product configurations are flexibly employable in our scheme, the latter which naturally makes it especially compatible with many-body quantum computing. Two main features of this scheme are the certification protocol that verifies whether the accumulated data uniquely characterize the quantum process, and a compressive reconstruction method for the output states. We emulate multipartite scenarios with high-order electromagnetic transverse modes and optical fibers to positively demonstrate that, in terms of measurement resources, our assumption-free compressive strategy can reconstruct quantum processes almost equally efficiently using all types of input states and basis measurement operations, operations, independent of whether or not they are factorizable into tensor-product states.