Do you want to publish a course? Click here

Self-Consistent Quantum Process Tomography

152   0   0.0 ( 0 )
 Added by Seth Merkel
 Publication date 2012
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum process tomography is a necessary tool for verifying quantum gates and diagnosing faults in architectures and gate design. We show that the standard approach of process tomography is grossly inaccurate in the case where the states and measurement operators used to interrogate the system are generated by gates that have some systematic error, a situation all but unavoidable in any practical setting. These errors in tomography can not be fully corrected through oversampling or by performing a larger set of experiments. We present an alternative method for tomography to reconstruct an entire library of gates in a self-consistent manner. The essential ingredient is to define a likelihood function that assumes nothing about the gates used for preparation and measurement. In order to make the resulting optimization tractable we linearize about the target, a reasonable approximation when benchmarking a quantum computer as opposed to probing a black-box function.



rate research

Read More

Quantum process tomography is an experimental technique to fully characterize an unknown quantum process. Standard quantum process tomography suffers from exponentially scaling of the number of measurements with the increasing system size. In this work, we put forward a quantum machine learning algorithm which approximately encodes the unknown unitary quantum process into a relatively shallow depth parametric quantum circuit. We demonstrate our method by reconstructing the unitary quantum processes resulting from the quantum Hamiltonian evolution and random quantum circuits up to $8$ qubits. Results show that those quantum processes could be reconstructed with high fidelity, while the number of input states required are at least $2$ orders of magnitude less than required by the standard quantum process tomography.
We present a compressive quantum process tomography scheme that fully characterizes any rank-deficient completely-positive process with no a priori information about the process apart from the dimension of the system on which the process acts. It uses randomly-chosen input states and adaptive output von Neumann measurements. Both entangled and tensor-product configurations are flexibly employable in our scheme, the latter which naturally makes it especially compatible with many-body quantum computing. Two main features of this scheme are the certification protocol that verifies whether the accumulated data uniquely characterize the quantum process, and a compressive reconstruction method for the output states. We emulate multipartite scenarios with high-order electromagnetic transverse modes and optical fibers to positively demonstrate that, in terms of measurement resources, our assumption-free compressive strategy can reconstruct quantum processes almost equally efficiently using all types of input states and basis measurement operations, operations, independent of whether or not they are factorizable into tensor-product states.
Characterisation protocols have so far played a central role in the development of noisy intermediate-scale quantum (NISQ) computers capable of impressive quantum feats. This trajectory is expected to continue in building the next generation of devices: ones that can surpass classical computers for particular tasks -- but progress in characterisation must keep up with the complexities of intricate device noise. A missing piece in the zoo of characterisation procedures is tomography which can completely describe non-Markovian dynamics. Here, we formally introduce a generalisation of quantum process tomography, which we call process tensor tomography. We detail the experimental requirements, construct the necessary post-processing algorithms for maximum-likelihood estimation, outline the best-practice aspects for accurate results, and make the procedure efficient for low-memory processes. The characterisation is the pathway to diagnostics and informed control of correlated noise. As an example application of the technique, we improve multi-time circuit fidelities on IBM Quantum devices for both standalone qubits and in the presence of crosstalk to a level comparable with the fault-tolerant noise threshold in a variety of different noise conditions. Our methods could form the core for carefully developed software that may help hardware consistently pass the fault-tolerant noise threshold.
We describe a technique for self consistently characterizing both the quantum state of a single qubit system, and the positive-operator-valued measure (POVM) that describes measurements on the system. The method works with only ten measurements. We assume that a series of unitary transformations performed on the quantum state are fully known, while making minimal assumptions about both the density operator of the state and the POVM. The technique returns maximum-likely estimates of both the density operator and the POVM. To experimentally demonstrate the method, we perform reconstructions of over 300 state-measurement pairs and compare them to their expected density operators and POVMs. We find that 95% of the reconstructed POVMs have fidelities of 0.98 or greater, and 92% of the density operators have fidelities that are 0.98 or greater.
We study the number of measurements required for quantum process tomography under prior information, such as a promise that the unknown channel is unitary. We introduce the notion of an interactive observable and we show that any unitary channel acting on a $d$-level quantum system can be uniquely identified among all other channels (unitary or otherwise) with only $O(d^2)$ interactive observables, as opposed to the $O(d^4)$ required for tomography of arbitrary channels. This result generalizes, so that channels with at most $q$ Kraus operators can be identified with only $O(qd^2)$ interactive observables. Slight improvements can be obtained if we wish to identify such a channel only among unital channels or among other channels with $q$ Kraus operators. These results are proven via explicit construction of large subspaces of Hermitian matrices with various conditions on rank, eigenvalues, and partial trace. Our constructions are built upon various forms of totally nonsingular matrices.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا