Do you want to publish a course? Click here

A Simple and Effective Method To Eliminate the Self Language Bias in Multilingual Representations

99   0   0.0 ( 0 )
 Added by Ziyi Yang
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Language agnostic and semantic-language information isolation is an emerging research direction for multilingual representations models. We explore this problem from a novel angle of geometric algebra and semantic space. A simple but highly effective method Language Information Removal (LIR) factors out language identity information from semantic related components in multilingual representations pre-trained on multi-monolingual data. A post-training and model-agnostic method, LIR only uses simple linear operations, e.g. matrix factorization and orthogonal projection. LIR reveals that for weak-alignment multilingual systems, the principal components of semantic spaces primarily encodes language identity information. We first evaluate the LIR on a cross-lingual question answer retrieval task (LAReQA), which requires the strong alignment for the multilingual embedding space. Experiment shows that LIR is highly effectively on this task, yielding almost 100% relative improvement in MAP for weak-alignment models. We then evaluate the LIR on Amazon Reviews and XEVAL dataset, with the observation that removing language information is able to improve the cross-lingual transfer performance.



rate research

Read More

The multilingual pre-trained language models (e.g, mBERT, XLM and XLM-R) have shown impressive performance on cross-lingual natural language understanding tasks. However, these models are computationally intensive and difficult to be deployed on resource-restricted devices. In this paper, we propose a simple yet effective distillation method (LightMBERT) for transferring the cross-lingual generalization ability of the multilingual BERT to a small student model. The experiment results empirically demonstrate the efficiency and effectiveness of LightMBERT, which is significantly better than the baselines and performs comparable to the teacher mBERT.
Transformer has demonstrated its great power to learn contextual word representations for multiple languages in a single model. To process multilingual sentences in the model, a learnable vector is usually assigned to each language, which is called language embedding. The language embedding can be either added to the word embedding or attached at the beginning of the sentence. It serves as a language-specific signal for the Transformer to capture contextual representations across languages. In this paper, we revisit the use of language embedding and identify several problems in the existing formulations. By investigating the interaction between language embedding and word embedding in the self-attention module, we find that the current methods cannot reflect the language-specific word correlation well. Given these findings, we propose a new approach called Cross-lingual Language Projection (XLP) to replace language embedding. For a sentence, XLP projects the word embeddings into language-specific semantic space, and then the projected embeddings will be fed into the Transformer model to process with their language-specific meanings. In such a way, XLP achieves the purpose of appropriately encoding language in a multilingual Transformer model. Experimental results show that XLP can freely and significantly boost the model performance on extensive multilingual benchmark datasets. Codes and models will be released at https://github.com/lsj2408/XLP.
Large transformer-based language models (LMs) trained on huge text corpora have shown unparalleled generation capabilities. However, controlling attributes of the generated language (e.g. switching topic or sentiment) is difficult without modifying the model architecture or fine-tuning on attribute-specific data and entailing the significant cost of retraining. We propose a simple alternative: the Plug and Play Language Model (PPLM) for controllable language generation, which combines a pretrained LM with one or more simple attribute classifiers that guide text generation without any further training of the LM. In the canonical scenario we present, the attribute models are simple classifiers consisting of a user-specified bag of words or a single learned layer with 100,000 times fewer parameters than the LM. Sampling entails a forward and backward pass in which gradients from the attribute model push the LMs hidden activations and thus guide the generation. Model samples demonstrate control over a range of topics and sentiment styles, and extensive automated and human annotated evaluations show attribute alignment and fluency. PPLMs are flexible in that any combination of differentiable attribute models may be used to steer text generation, which will allow for diverse and creative applications beyond the examples given in this paper.
Languages typically provide more than one grammatical construction to express certain types of messages. A speakers choice of construction is known to depend on multiple factors, including the choice of main verb -- a phenomenon known as emph{verb bias}. Here we introduce DAIS, a large benchmark dataset containing 50K human judgments for 5K distinct sentence pairs in the English dative alternation. This dataset includes 200 unique verbs and systematically varies the definiteness and length of arguments. We use this dataset, as well as an existing corpus of naturally occurring data, to evaluate how well recent neural language models capture human preferences. Results show that larger models perform better than smaller models, and transformer architectures (e.g. GPT-2) tend to out-perform recurrent architectures (e.g. LSTMs) even under comparable parameter and training settings. Additional analyses of internal feature representations suggest that transformers may better integrate specific lexical information with grammatical constructions.
General-purpose language models have demonstrated impressive capabilities, performing on par with state-of-the-art approaches on a range of downstream natural language processing (NLP) tasks and benchmarks when inferring instructions from very few examples. Here, we evaluate the multilingual skills of the GPT and T5 models in conducting multi-class classification on non-English languages without any parameter updates. We show that, given a few English examples as context, pre-trained language models can predict not only English test samples but also non-English ones. Finally, we find the in-context few-shot cross-lingual prediction results of language models are significantly better than random prediction, and they are competitive compared to the existing state-of-the-art cross-lingual models.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا