Do you want to publish a course? Click here

CINS: Comprehensive Instruction for Few-shot Learning in Task-oriented Dialog Systems

127   0   0.0 ( 0 )
 Added by Fei Mi
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

As labeling cost for different modules in task-oriented dialog (ToD) systems is high, a major challenge in practice is to learn different tasks with the least amount of labeled data. Recently, prompting methods over pre-trained language models (PLMs) have shown promising results for few-shot learning in ToD. To better utilize the power of PLMs, this paper proposes Comprehensive Instruction (CINS) that exploits PLMs with extra task-specific instructions. We design a schema (definition, constraint, prompt) of instructions and their customized realizations for three important downstream tasks in ToD, i.e. intent classification, dialog state tracking, and natural language generation. A sequence-to-sequence model (T5) is adopted to solve these three tasks in a unified framework. Extensive experiments are conducted on these ToD tasks in realistic few-shot learning scenarios with small validation data. Empirical results demonstrate that the proposed CINS approach consistently improves techniques that finetune PLMs with raw input or short prompts.



rate research

Read More

101 - Fei Mi , Wanhao Zhou , Fengyu Cai 2021
As the labeling cost for different modules in task-oriented dialog (ToD) systems is expensive, a major challenge is to train different modules with the least amount of labeled data. Recently, large-scale pre-trained language models, have shown promising results for few-shot learning in ToD. In this paper, we devise a self-training approach to utilize the abundant unlabeled dialog data to further improve state-of-the-art pre-trained models in few-shot learning scenarios for ToD systems. Specifically, we propose a self-training approach that iteratively labels the most confident unlabeled data to train a stronger Student model. Moreover, a new text augmentation technique (GradAug) is proposed to better train the Student by replacing non-crucial tokens using a masked language model. We conduct extensive experiments and present analyses on four downstream tasks in ToD, including intent classification, dialog state tracking, dialog act prediction, and response selection. Empirical results demonstrate that the proposed self-training approach consistently improves state-of-the-art pre-trained models (BERT, ToD-BERT) when only a small number of labeled data are available.
As a crucial component in task-oriented dialog systems, the Natural Language Generation (NLG) module converts a dialog act represented in a semantic form into a response in natural language. The success of traditional template-based or statistical models typically relies on heavily annotated data, which is infeasible for new domains. Therefore, it is pivotal for an NLG system to generalize well with limited labelled data in real applications. To this end, we present FewShotWoz, the first NLG benchmark to simulate the few-shot learning setting in task-oriented dialog systems. Further, we develop the SC-GPT model. It is pre-trained on a large set of annotated NLG corpus to acquire the controllable generation ability, and fine-tuned with only a few domain-specific labels to adapt to new domains. Experiments on FewShotWoz and the large Multi-Domain-WOZ datasets show that the proposed SC-GPT significantly outperforms existing methods, measured by various automatic metrics and human evaluations.
Task oriented language understanding in dialog systems is often modeled using intents (task of a query) and slots (parameters for that task). Intent detection and slot tagging are, in turn, modeled using sentence classification and word tagging techniques respectively. Similar to adversarial attack problems with computer vision models discussed in existing literature, these intent-slot tagging models are often over-sensitive to small variations in input -- predicting different and often incorrect labels when small changes are made to a query, thus reducing their accuracy and reliability. However, evaluating a models robustness to these changes is harder for language since words are discrete and an automated change (e.g. adding `noise) to a query sometimes changes the meaning and thus labels of a query. In this paper, we first describe how to create an adversarial test set to measure the robustness of these models. Furthermore, we introduce and adapt adversarial training methods as well as data augmentation using back-translation to mitigate these issues. Our experiments show that both techniques improve the robustness of the system substantially and can be combined to yield the best results.
One of the first steps in the utterance interpretation pipeline of many task-oriented conversational AI systems is to identify user intents and the corresponding slots. Since data collection for machine learning models for this task is time-consuming, it is desirable to make use of existing data in a high-resource language to train models in low-resource languages. However, development of such models has largely been hindered by the lack of multilingual training data. In this paper, we present a new data set of 57k annotated utterances in English (43k), Spanish (8.6k) and Thai (5k) across the domains weather, alarm, and reminder. We use this data set to evaluate three different cross-lingual transfer methods: (1) translating the training data, (2) using cross-lingual pre-trained embeddings, and (3) a novel method of using a multilingual machine translation encoder as contextual word representations. We find that given several hundred training examples in the the target language, the latter two methods outperform translating the training data. Further, in very low-resource settings, multilingual contextual word representations give better results than using cross-lingual static embeddings. We also compare the cross-lingual methods to using monolingual resources in the form of contextual ELMo representations and find that given just small amounts of target language data, this method outperforms all cross-lingual methods, which highlights the need for more sophisticated cross-lingual methods.
Humans can learn a new language task more efficiently than machines, conceivably by leveraging their prior experience and knowledge in learning other tasks. In this paper, we explore whether such cross-task generalization ability can be acquired, and further applied to build better few-shot learners across diverse NLP tasks. We introduce CrossFit, a task setup for studying cross-task few-shot learning ability, which standardizes seen/unseen task splits, data access during different learning stages, and the evaluation protocols. In addition, we present NLP Few-shot Gym, a repository of 160 few-shot NLP tasks, covering diverse task categories and applications, and converted to a unified text-to-text format. Our empirical analysis reveals that the few-shot learning ability on unseen tasks can be improved via an upstream learning stage using a set of seen tasks. Additionally, the advantage lasts into medium-resource scenarios when thousands of training examples are available. We also observe that selection of upstream learning tasks can significantly influence few-shot performance on unseen tasks, asking further analysis on task similarity and transferability.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا