Do you want to publish a course? Click here

Entanglement and superposition are equivalent concepts in any physical theory

153   0   0.0 ( 0 )
 Added by Ludovico Lami
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove that any two general probabilistic theories (GPTs) are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements, if and only if they are both non-classical, meaning that neither of the state spaces is a simplex. This establishes the universal equivalence of the (local) superposition principle and the existence of global entanglement, valid in a fully theory-independent way. As an application of our techniques, we show that all non-classical GPTs exhibit a strong form of incompatibility of states and measurements, and use this to construct a version of the BB84 protocol that works in any non-classical GPT.



rate research

Read More

A combination of a finite number of linear independent states forms superposition in a way that cannot be conceived classically. Here, using the tools of resource theory of superposition, we give the conditions for a class of superposition state transformations. These conditions strictly depend on the scalar products of the basis states and reduce to the well-known majorization condition for quantum coherence in the limit of orthonormal basis. To further superposition-free transformations of $d$-dimensional systems, we provide superposition-free operators for a deterministic transformation of superposition states. The linear independence of a finite number of basis states requires a relation between the scalar products of these states. With this information in hand, we determine the maximal superposition states which are valid over a certain range of scalar products. Notably, we show that, for $dgeq3$, scalar products of the pure superposition-free states have a greater place in seeking maximally resourceful states. Various explicit examples illustrate our findings.
We investigate the consistency of coherent state (or Berezin-Klauder-Toeplitz, or anti-Wick) quantization in regard to physical observations in the non- relativistic (or Galilean) regime. We compare this procedure with the canonical quantization (on both mathematical and physical levels) and examine whether they are or not equivalent in their predictions: is it possible to dif- ferentiate them on a strictly physical level? As far as only usual dynamical observables (position, momentum, energy, ...) are concerned, the quantization through coherent states is proved to be a perfectly valid alternative. We successfully put to the test the validity of CS quantization in the case of data obtained from vibrational spectroscopy (data that allowed to validate canonical quantization in the early period of Quantum Mechanics).
117 - Li-Wei Yu , Mo-Lin Ge 2018
Starting from the Kauffman-Lomonaco braiding matrix transforming the natural basis to Bell states, the spectral parameter describing the entanglement is introduced through Yang-Baxterization. It gives rise to a new type of solutions for Yang-Baxter equation, called the type-II that differs from the familiar solution called type-I of YBE associated with the usual chain models. The Majorana fermionic version of type-II yields the Kitaev Hamiltonian. The introduced $ell_1$ -norm leads to the maximum of the entanglement by taking the extreme value and shows that it is related to the Wigners D-function. Based on the Yang-Baxter equation the 3-body S-Matrix for type-II is explicitly given. Different from the type-I solution, the type-II solution of YBE should be considered in describing quantum information. The idea is further extended to $mathbb{Z}_3$ parafermion model based on $SU(3)$ principal representation. The type-II is in difference from the familiar type-I in many respects. For example, the quantities corresponding to velocity in the chain models obey the Lorentzian additivity $frac{u+v}{1+uv}$ rather than Galilean rule $(u+v)$. Most possibly, for the type-II solutions of YBE there may not exist RTT relation. Further more, for $mathbb{Z}_3$ parafermion model we only need the rational Yang-Baxterization, which seems like trigonometric. Similar discussions are also made in terms of generalized Yang-Baxter equation with three spin spaces ${1,frac{1}{2},frac{1}{2}}$.
Starting from arbitrary sets of quantum states and measurements, referred to as the prepare-and-measure scenario, a generalized Spekkens non-contextual ontological model representation of the quantum statistics associated to the prepare-and-measure scenario is constructed. The generalization involves the new notion of a reduced space which is non-trivial for non-tomographically complete scenarios. A new mathematical criterion, called unit separability, is formulated as the relevant classicality criterion -- the name is inspired by the usual notion of quantum state separability. Using this criterion, we derive a new upper bound on the cardinality of the ontic space. Then, we recast the unit separability criterion as a (possibly infinite) set of linear constraints, from which two separate converging hierarchies of algorithmic tests to witness non-classicality or certify classicality are obtained. We relate the complexity of these algorithmic tests to that of a class of vertex enumeration problems. Finally, we reformulate our results in the framework of generalized probabilistic theories and discuss the implications for simplex-embeddability in such theories.
We introduce the class of Genuinely Local Operation and Shared Randomness (LOSR) Multipartite Nonlocal correlations, that is, correlations between N parties that cannot be obtained from unlimited shared randomness supplemented by any composition of (N-1)-shared causal Generalized-Probabilistic-Theory (GPT) resources. We then show that noisy N-partite GHZ quantum states as well as the 3-partite W quantum state can produce such correlations. This proves, if the operational predictions of quantum theory are correct, that Natures nonlocality must be boundlessly multipartite in any causal GPT. We develop a computational method which certifies that a noisy N=3 GHZ quantum state with fidelity 85 percent satisfies this property, making an experimental demonstration of our results within reach. We motivate our definition and contrast it with preexisting notions of genuine multipartite nonlocality. This work extends a more compact parallel letter on the same subject and provides all the required technical proofs.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا