Do you want to publish a course? Click here

Any Physical Theory of Nature Must Be Boundlessly Multipartite Nonlocal

70   0   0.0 ( 0 )
 Added by Xavier Coiteux-Roy
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We introduce the class of Genuinely Local Operation and Shared Randomness (LOSR) Multipartite Nonlocal correlations, that is, correlations between N parties that cannot be obtained from unlimited shared randomness supplemented by any composition of (N-1)-shared causal Generalized-Probabilistic-Theory (GPT) resources. We then show that noisy N-partite GHZ quantum states as well as the 3-partite W quantum state can produce such correlations. This proves, if the operational predictions of quantum theory are correct, that Natures nonlocality must be boundlessly multipartite in any causal GPT. We develop a computational method which certifies that a noisy N=3 GHZ quantum state with fidelity 85 percent satisfies this property, making an experimental demonstration of our results within reach. We motivate our definition and contrast it with preexisting notions of genuine multipartite nonlocality. This work extends a more compact parallel letter on the same subject and provides all the required technical proofs.



rate research

Read More

In recent attempts to observe axion electrodynamics, much effort has focused on trilayer heterostructures of magnetic topological insulators, and in particular on the examination of a so-called zero Hall plateau, which has misguidedly been overstated as direct evidence of an axion insulator state. We investigate the general notion of axion insulators, which by definition must contain a nontrivial volume to host the axion term. We conduct a detailed magneto-transport analysis of Chern insulators comprised of a single magnetic topological insulator layer of varying thickness as well as trilayer structures, for samples optimized to yield a perfectly quantized anomalous Hall effect. Our analysis gives evidence for a topological magneto-electric effect quantized in units of e$^2$/2h, allowing us to identify signatures of axion electrodynamics. Our observations may provide direct experimental access to electrodynamic properties of the universe beyond the traditional Maxwell equations, and challenge the hitherto proclaimed exclusive link between the observation of a zero Hall plateau and an axion insulator.
We present a general method to characterize the quantum correlations obtained after local measurements on multipartite systems. Sufficient conditions for a quantum system to be fully-nonlocal according to a given partition, as well as being (genuinely) multipartite fully-nonlocal, are derived. These conditions allow us to identify all completely-connected graph states as multipartite fully-nonlocal quantum states. Moreover, we show that this feature can also be observed in mixed states: the tensor product of five copies of the Smolin state, a biseparable and bound entangled state, is multipartite fully-nonlocal.
128 - Soojoon Lee , Jinhyoung Lee , 2009
We study the explicit relation between violation of Bell inequalities and bipartite distillability of multi-qubit states. It has been shown that even though for $Nge 8$ there exist $N$-qubit bound entangled states which violates a Bell inequality [Phys. Rev. Lett. {bf 87}, 230402 (2001)], for all the states violating the inequality there exists at least one splitting of the parties into two groups such that pure-state entanglement can be distilled [Phys. Rev. Lett. {bf 88}, 027901 (2002)]. We here prove that for all $N$-qubit states violating the inequality the number of distillable bipartite splits increases exponentially with $N$, and hence the probability that a randomly chosen bipartite split is distillable approaches one exponentially with $N$, as $N$ tends to infinity. We also show that there exists at least one $N$-qubit bound entangled state violating the inequality if and only if $Nge 6$.
A broad range of quantum optimisation problems can be phrased as the question whether a specific system has a ground state at zero energy, i.e. whether its Hamiltonian is frustration free. Frustration-free Hamiltonians, in turn, play a central role for constructing and understanding new phases of matter in quantum many-body physics. Unfortunately, determining whether this is the case is known to be a complexity-theoretically intractable problem. This makes it highly desirable to search for efficient heuristics and algorithms in order to, at least, partially answer this question. Here we prove a general criterion - a sufficient condition - under which a local Hamiltonian is guaranteed to be frustration free by lifting Shearers theorem from classical probability theory to the quantum world. Remarkably, evaluating this condition proceeds via a fully classical analysis of a hard-core lattice gas at negative fugacity on the Hamiltonians interaction graph which, as a statistical mechanics problem, is of interest in its own right. We concretely apply this criterion to local Hamiltonians on various regular lattices, while bringing to bear the tools of spin glass physics which permit us to obtain new bounds on the SAT/UNSAT transition in random quantum satisfiability. These also lead us to natural conjectures for when such bounds will be tight, as well as to a novel notion of universality for these computer science problems. Besides providing concrete algorithms leading to detailed and quantitative insights, this underscores the power of marrying classical statistical mechanics with quantum computation and complexity theory.
We prove that any two general probabilistic theories (GPTs) are entangleable, in the sense that their composite exhibits either entangled states or entangled measurements, if and only if they are both non-classical, meaning that neither of the state spaces is a simplex. This establishes the universal equivalence of the (local) superposition principle and the existence of global entanglement, valid in a fully theory-independent way. As an application of our techniques, we show that all non-classical GPTs exhibit a strong form of incompatibility of states and measurements, and use this to construct a version of the BB84 protocol that works in any non-classical GPT.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا