Do you want to publish a course? Click here

HintedBT: Augmenting Back-Translation with Quality and Transliteration Hints

119   0   0.0 ( 0 )
 Added by Sahana Ramnath
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Back-translation (BT) of target monolingual corpora is a widely used data augmentation strategy for neural machine translation (NMT), especially for low-resource language pairs. To improve effectiveness of the available BT data, we introduce HintedBT -- a family of techniques which provides hints (through tags) to the encoder and decoder. First, we propose a novel method of using both high and low quality BT data by providing hints (as source tags on the encoder) to the model about the quality of each source-target pair. We dont filter out low quality data but instead show that these hints enable the model to learn effectively from noisy data. Second, we address the problem of predicting whether a source token needs to be translated or transliterated to the target language, which is common in cross-script translation tasks (i.e., where source and target do not share the written script). For such cases, we propose training the model with additional hints (as target tags on the decoder) that provide information about the operation required on the source (translation or both translation and transliteration). We conduct experiments and detailed analyses on standard WMT benchmarks for three cross-script low/medium-resource language pairs: {Hindi,Gujarati,Tamil}-to-English. Our methods compare favorably with five strong and well established baselines. We show that using these hints, both separately and together, significantly improves translation quality and leads to state-of-the-art performance in all three language pairs in corresponding bilingual settings.

rate research

Read More

We introduce ChrEnTranslate, an online machine translation demonstration system for translation between English and an endangered language Cherokee. It supports both statistical and neural translation models as well as provides quality estimation to inform users of reliability, two user feedback interfaces for experts and common users respectively, example inputs to collect human translations for monolingual data, word alignment visualization, and relevant terms from the Cherokee-English dictionary. The quantitative evaluation demonstrates that our backbone translation models achieve state-of-the-art translation performance and our quality estimation well correlates with both BLEU and human judgment. By analyzing 216 pieces of expert feedback, we find that NMT is preferable because it copies less than SMT, and, in general, current models can translate fragments of the source sentence but make major mistakes. When we add these 216 expert-corrected parallel texts back into the training set and retrain models, equal or slightly better performance is observed, which indicates the potential of human-in-the-loop learning. Our online demo is at https://chren.cs.unc.edu/ , our code is open-sourced at https://github.com/ZhangShiyue/ChrEnTranslate , and our data is available at https://github.com/ZhangShiyue/ChrEn
Recent work in Neural Machine Translation (NMT) has shown significant quality gains from noised-beam decoding during back-translation, a method to generate synthetic parallel data. We show that the main role of such synthetic noise is not to diversify the source side, as previously suggested, but simply to indicate to the model that the given source is synthetic. We propose a simpler alternative to noising techniques, consisting of tagging back-translated source sentences with an extra token. Our results on WMT outperform noised back-translation in English-Romanian and match performance on English-German, re-defining state-of-the-art in the former.
Natural language explanations (NLEs) are a special form of data annotation in which annotators identify rationales (most significant text tokens) when assigning labels to data instances, and write out explanations for the labels in natural language based on the rationales. NLEs have been shown to capture human reasoning better, but not as beneficial for natural language inference (NLI). In this paper, we analyze two primary flaws in the way NLEs are currently used to train explanation generators for language inference tasks. We find that the explanation generators do not take into account the variability inherent in human explanation of labels, and that the current explanation generation models generate spurious explanations. To overcome these limitations, we propose a novel framework, LIREx, that incorporates both a rationale-enabled explanation generator and an instance selector to select only relevant, plausible NLEs to augment NLI models. When evaluated on the standardized SNLI data set, LIREx achieved an accuracy of 91.87%, an improvement of 0.32 over the baseline and matching the best-reported performance on the data set. It also achieves significantly better performance than previous studies when transferred to the out-of-domain MultiNLI data set. Qualitative analysis shows that LIREx generates flexible, faithful, and relevant NLEs that allow the model to be more robust to spurious explanations. The code is available at https://github.com/zhaoxy92/LIREx.
Obtaining high-quality parallel corpora is of paramount importance for training NMT systems. However, as many language pairs lack adequate gold-standard training data, a popular approach has been to mine so-called pseudo-parallel sentences from paired documents in two languages. In this paper, we outline some problems with current methods, propose computationally economical solutions to those problems, and demonstrate success with novel methods on the Tatoeba similarity search benchmark and on a downstream task, namely NMT. We uncover the effect of resource-related factors (i.e. how much monolingual/bilingual data is available for a given language) on the optimal choice of bitext mining approach, and echo problems with the oft-used BUCC dataset that have been observed by others. We make the code and data used for our experiments publicly available.
We investigate the problem of simultaneous machine translation of long-form speech content. We target a continuous speech-to-text scenario, generating translated captions for a live audio feed, such as a lecture or play-by-play commentary. As this scenario allows for revisions to our incremental translations, we adopt a re-translation approach to simultaneous translation, where the source is repeatedly translated from scratch as it grows. This approach naturally exhibits very low latency and high final quality, but at the cost of incremental instability as the output is continuously refined. We experiment with a pipeline of industry-grade speech recognition and translation tools, augmented with simple inference heuristics to improve stability. We use TED Talks as a source of multilingual test data, developing our techniques on English-to-German spoken language translation. Our minimalist approach to simultaneous translation allows us to easily scale our final evaluation to six more target languages, dramatically improving incremental stability for all of them.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا