Do you want to publish a course? Click here

Clockwork Finance: Automated Analysis of Economic Security in Smart Contracts

124   0   0.0 ( 0 )
 Added by Philip Daian
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We introduce the Clockwork Finance Framework (CFF), a general purpose, formal verification framework for mechanized reasoning about the economic security properties of composed decentralized-finance (DeFi) smart contracts. CFF features three key properties. It is contract complete, meaning that it can model any smart contract platform and all its contracts -- Turing complete or otherwise. It does so with asymptotically optimal model size. It is also attack-exhaustive by construction, meaning that it can automatically and mechanically extract all possible economic attacks on users cryptocurrency across modeled contracts. Thanks to these properties, CFF can support multiple goals: economic security analysis of contracts by developers, analysis of DeFi trading risks by users, and optimization of arbitrage opportunities by bots or miners. Because CFF offers composability, it can support these goals with reasoning over any desired set of potentially interacting smart contract models. We instantiate CFF as an executable model for Ethereum contracts that incorporates a state-of-the-art deductive verifier. Building on previous work, we introduce extractable value (EV), a new formal notion of economic security in composed DeFi contracts that is both a basis for CFF analyses and of general interest. We construct modular, human-readable, composable CFF models of four popular, deployed DeFi protocols in Ethereum: Uniswap, Uniswap V2, Sushiswap, and MakerDAO, representing a combined 17 billion USD in value as of August 2021. We uses these models to show experimentally that CFF is practical and can drive useful, data-based EV-based insights from real world transaction activity. Without any explicitly programmed attack strategies, CFF uncovers on average an expected $56 million of EV per month in the recent past.



rate research

Read More

The emerging blockchain technology supports decentralized computing paradigm shift and is a rapidly approaching phenomenon. While blockchain is thought primarily as the basis of Bitcoin, its application has grown far beyond cryptocurrencies due to the introduction of smart contracts. Smart contracts are self-enforcing pieces of software, which reside and run over a hosting blockchain. Using blockchain-based smart contracts for secure and transparent management to govern interactions (authentication, connection, and transaction) in Internet-enabled environments, mostly IoT, is a niche area of research and practice. However, writing trustworthy and safe smart contracts can be tremendously challenging because of the complicated semantics of underlying domain-specific languages and its testability. There have been high-profile incidents that indicate blockchain smart contracts could contain various code-security vulnerabilities, instigating financial harms. When it involves security of smart contracts, developers embracing the ability to write the contracts should be capable of testing their code, for diagnosing security vulnerabilities, before deploying them to the immutable environments on blockchains. However, there are only a handful of security testing tools for smart contracts. This implies that the existing research on automatic smart contracts security testing is not adequate and remains in a very stage of infancy. With a specific goal to more readily realize the application of blockchain smart contracts in security and privacy, we should first understand their vulnerabilities before widespread implementation. Accordingly, the goal of this paper is to carry out a far-reaching experimental assessment of current static smart contracts security testing tools, for the most widely used blockchain, the Ethereum and its domain-specific programming language, Solidity to provide the first...
Smart contracts are programs running on cryptocurrency (e.g., Ethereum) blockchains, whose popularity stem from the possibility to perform financial transactions, such as payments and auctions, in a distributed environment without need for any trusted third party. Given their financial nature, bugs or vulnerabilities in these programs may lead to catastrophic consequences, as witnessed by recent attacks. Unfortunately, programming smart contracts is a delicate task that requires strong expertise: Ethereum smart contracts are written in Solidity, a dedicated language resembling JavaScript, and shipped over the blockchain in the EVM bytecode format. In order to rigorously verify the security of smart contracts, it is of paramount importance to formalize their semantics as well as the security properties of interest, in particular at the level of the bytecode being executed. In this paper, we present the first complete small-step semantics of EVM bytecode, which we formalize in the F* proof assistant, obtaining executable code that we successfully validate against the official Ethereum test suite. Furthermore, we formally define for the first time a number of central security properties for smart contracts, such as call integrity, atomicity, and independence from miner controlled parameters. This formalization relies on a combination of hyper- and safety properties. Along this work, we identified various mistakes and imprecisions in existing semantics and verification tools for Ethereum smart contracts, thereby demonstrating once more the importance of rigorous semantic foundations for the design of security verification techniques.
Recent attacks exploiting errors in smart contract code had devastating consequences thereby questioning the benefits of this technology. It is currently highly challenging to fix errors and deploy a patched contract in time. Instant patching is especially important since smart contracts are always online due to the distributed nature of blockchain systems. They also manage considerable amounts of assets, which are at risk and often beyond recovery after an attack. Existing solutions to upgrade smart contracts depend on manual and error-prone processes. This paper presents a framework, called EVMPatch, to instantly and automatically patch faulty smart contracts. EVMPatch features a bytecode rewriting engine for the popular Ethereum blockchain, and transparently/automatically rewrites common off-the-shelf contracts to upgradable contracts. The proof-of-concept implementation of EVMPatch automatically hardens smart contracts that are vulnerable to integer over/underflows and access control errors, but can be easily extended to cover more bug classes. Our extensive evaluation on 14,000 real-world (vulnerable) contracts demonstrate that our approach successfully blocks attack transactions launched on these contracts, while keeping the intended functionality of the contract intact. We perform a study with experienced software developers, showing that EVMPatch is practical, and reduces the time for converting a given Solidity smart contract to an upgradable contract by 97.6 %, while ensuring functional equivalence to the original contract.
Ethereum smart contracts are distributed programs running on top of the Ethereum blockchain. Since program flaws can cause significant monetary losses and can hardly be fixed due to the immutable nature of the blockchain, there is a strong need of automated analysis tools which provide formal security guarantees. Designing such analyzers, however, proved to be challenging and error-prone. We review the existing approaches to automated, sound, static analysis of Ethereum smart contracts and highlight prevalent issues in the state of the art. Finally, we overview eThor, a recent static analysis tool that we developed following a principled design and implementation approach based on rigorous semantic foundations to overcome the problems of past works.
We investigate a family of bugs in blockchain-based smart contracts, which we call event-ordering (or EO) bugs. These bugs are intimately related to the dynamic ordering of contract events, i.e., calls of its functions on the blockchain, and enable potential exploits of millions of USD worth of Ether. Known examples of such bugs and prior techniques to detect them have been restricted to a small number of event orderings, typicall 1 or 2. Our work provides a new formulation of this general class of EO bugs as finding concurrency properties arising in long permutations of such events. The technical challenge in detecting our formulation of EO bugs is the inherent combinatorial blowup in path and state space analysis, even for simple contracts. We propose the first use of partial-order reduction techniques, using happen-before relations extracted automatically for contracts, along with several other optimizations built on a dynamic symbolic execution technique. We build an automatic tool called ETHRACER that requires no hints from users and runs directly on Ethereum bytecode. It flags 7-11% of over ten thousand contracts analyzed in roughly 18.5 minutes per contract, providing compact event traces that human analysts can run as witnesses. These witnesses are so compact that confirmations require only a few minutes of human effort. Half of the flagged contracts have subtle EO bugs, including in ERC-20 contracts that carry hundreds of millions of dollars worth of Ether. Thus, ETHRACER is effective at detecting a subtle yet dangerous class of bugs which existing tools miss.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا