Do you want to publish a course? Click here

Casimir force among spheres made of Weyl semimetals breaking Lorentz reciprocity

365   0   0.0 ( 0 )
 Added by Yoichiro Tsurimaki
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

The Casimir force and thermal Casimir force originating from quantum electromagnetic fluctuations at zero and non-zero temperatures, respectively, are significant in nano- and microscale systems and are well-understood. Less understood, however, are the Casimir and thermal Casimir forces in systems breaking Lorentz reciprocity. In this work, we derive a formalism for thermal Casimir forces between an arbitrary number of spheres based on fluctuational electrodynamics and scattering theory without the assumption of Lorentz reciprocity. We study the total Casimir force in systems of two and three Weyl semimetal spheres with time-reversal symmetry breaking for different orientations of the momentum-space separation of Weyl nodes in both thermal equilibrium and nonequilibrium. In thermal nonequilibrium, we show that a net thermal Casimir force exists not only along the center-to-center displacements of the spheres, but also in the transverse direction to it due to thermal emission with non-zero angular momentum. Different symmetries of the system drive a variety of dynamics such as global rotations, self-propulsion, and spinning of the spheres. We also show that the Casimir energy in thermal equilibrium depends on the orientations of the Weyl node directions in the spheres and that the lateral Casimir force will act between the spheres even in thermal equilibrium to relax the system into the minimum energy state without transferring net energy and momentum to the environment. The developed framework opens a way for investigating many-body dynamics by Casimir and thermal Casimir forces among arbitrary number of spheres with arbitrary dielectric function tensors in both thermal equilibrium and nonequilibrium.

rate research

Read More

Weyl semimetals host linear energy dispersions around Weyl nodes, as well as monopoles of Berry curvature in momentum space around these points. These features give rise to unique transport signatures in a Weyl semimetal, such as transverse transport without an applied magnetic field, known as anomalous transport. The type-II Weyl semimetal, recently experimentally demonstrated in several materials, is classified by a tilting of the Weyl nodes. This paper provides a theoretical study on thermoelectric transport in time-reversal breaking type-II Weyl semimetals. Our results examine the balance between anomalous and non-anomalous contributions to the Nernst effect when subject to an external magnetic field. We also show how increasing scattering times have on enhancing effect on thermoelectric transport in these materials. Since a temperature-dependent chemical potential has been theoretically shown to be paramount when considering anomalous transport, we also study how similar considerations impact the Nernst thermopower in the non-anomalous case.
Smooth interfaces of topological systems are known to host massive surface states along with the topologically protected chiral one. We show that in Weyl semimetals these massive states, along with the chiral Fermi arc, strongly alter the form of the Fermi-arc plasmon, Most saliently, they yield further collective plasmonic modes that are absent in a conventional interfaces. The plasmon modes are completely anisotropic as a consequence of the underlying anisotropy in the surface model and expected to have a clear-cut experimental signature, e.g. in electron-energy loss spectroscopy.
Fermions in nature come in several types: Dirac, Majorana and Weyl are theoretically thought to form a complete list. Even though Majorana and Weyl fermions have for decades remained experimentally elusive, condensed matter has recently emerged as fertile ground for their discovery as low energy excitations of realistic materials. Here we show the existence of yet another particle - a new type of Weyl fermion - that emerges at the boundary between electron and hole pockets in a new type of Weyl semimetal phase of matter. This fermion was missed by Weyl in 1929 due to its breaking of the stringent Lorentz symmetry of high-energy physics. Lorentz invariance however is not present in condensed matter physics, and we predict that an established material, WTe$_2$, is an example of this novel type of topological semimetal hosting the new particle as a low energy excitation around a type-2 Weyl node. This node, although still a protected crossing, has an open, finite-density of states Fermi surface, likely resulting in a plethora physical properties very different from those of standard point-like Fermi surface Weyl points.
We investigate higher-order Weyl semimetals (HOWSMs) having bulk Weyl nodes attached to both surface and hinge Fermi arcs. We identify a new type of Weyl node, that we dub a $2nd$ order Weyl node, that can be identified as a transition in momentum space in which both the Chern number and a higher order topological invariant change. As a proof of concept we use a model of stacked higher order quadrupole insulators to identify three types of WSM phases: $1st$-order, $2nd$-order, and hybrid-order. The model can also realize type-II and hybrid-tilt WSMs with various surface and hinge arcs. Moreover, we show that a measurement of charge density in the presence of magnetic flux can help identify some classes of $2nd$ order WSMs. Remarkably, we find that coupling a $2nd$-order Weyl phase with a conventional $1st$-order one can lead to a hybrid-order topological insulator having coexisting surface cones and flat hinge arcs that are independent and not attached to each other. Finally, we show that periodic driving can be utilized as a way for generating HOWSMs. Our results are relevant to metamaterials as well as various phases of Cd$_3$As$_2$, KMgBi, and rutile-structure PtO$_2$ that have been predicted to realize higher order Dirac semimetals.
We introduce a method for breaking Lorentz reciprocity based upon the non-commutation of frequency conversion and delay. The method requires no magnetic materials or resonant physics, allowing for the design of scalable and broadband non-reciprocal circuits. With this approach, two types of gyrators --- universal building blocks for linear, non-reciprocal circuits --- are constructed. Using one of these gyrators, we create a circulator with > 15 dB of isolation across the 5 -- 9 GHz band. Our designs may be readily extended to any platform with suitable frequency conversion elements, including semiconducting devices for telecommunication or an on-chip superconducting implementation for quantum information processing.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا