Do you want to publish a course? Click here

Recycling qubits for the generation of Bell nonlocality between independent sequential observers

154   0   0.0 ( 0 )
 Added by Shuming Cheng
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

There is currently much interest in the recycling of entangled systems, for use in quantum information protocols by sequential observers. In this work, we study the sequential generation of Bell nonlocality via recycling one or both components of two-qubit states. We first give a description of two-valued qubit measurements in terms of measurement bias, strength, and reversibility, and derive useful tradeoff relations between them. Then, we derive one-sided monogamy relations that support the recent Conjecture in [S. Cheng {it et al.}, arXiv:2102.11574], that if the first pair of observers violate Bell nonlocality then a subsequent independent pair cannot. We also answer a question raised in [P. J. Brown and R. Colbeck, Phys. Rev. Lett. textbf{125}, 090401 (2020)], by showing that the conditions given therein for the recycling of one qubit by an arbitrarily large number of observers are sufficient but not necessary. Finally, we find that it is possible to share Bell nonlocality between multiple pairs of independent observers on both sides, if sufficiently many pairs of qubits are shared. Our results are based on a formalism that is applicable to more general problems in recycling entanglement, and hence is expected to aid progress in this field.



rate research

Read More

We give strong analytic and numerical evidence that, under mild measurement assumptions, two qubits cannot both be recycled to generate Bell nonlocality between multiple independent observers on each side. This is surprising, as under the same assumptions it is possible to recycle just one of the qubits an arbitrarily large number of times [P. J. Brown and R. Colbeck, Phys. Rev. Lett. 125, 090401 (2020)]. We derive corresponding one-sided monogamy relations that rule out two-sided recycling for a wide range of parameters, based on a general tradeoff relation between the strengths and maximum reversibilities of qubit measurements. We also show if the assumptions are relaxed to allow sufficiently biased measurement selections, then there is a narrow range of measurement strengths that allows two-sided recycling for two observers on each side, and propose an experimental test. Our methods may be readily applied to other types of quantum correlations, such as steering and entanglement, and hence to general information protocols involving sequential measurements.
57 - Dov Fields , Arpad Varga , 2020
We study sequential state discrimination measurements performed on the same qubit by subsequent observers. Specifically, we focus on the case when the observers perform a kind of a minimum-error type state discriminating measurement where the goal of the observers is to maximize their joint probability of successfully guessing the state that the qubit was initially prepared in. We call this the joint best guess strategy. In this scheme, Alice prepares a qubit in one of two possible states. The qubit is first sent to Bob, who measures it, and then on to Charlie, and so on to altogether N consecutive receivers who all perform measurements on it. The goal for all observers is to determine which state Alice sent. In the joint best guess strategy, every time a system is received the observer is required to make a guess, aided by the measurement, about its state. The price to pay for this requirement is that errors must be permitted, the guess can be correct or in error. There is a nonzero probability for all the receivers to successfully identify the initially prepared state, and we maximize this joint probability of success. This work is a step toward developing a theory of nondestructive sequential quantum measurements and could be useful in multiparty quantum communication schemes based on communicating with single qubits, particularly in schemes employing continuous variable states. It also represents a case where subsequent observers can probabilistically and optimally get around both the collapse postulate and the no-broadcasting theorem.
We consider the behaviour of bipartite and tripartite non-locality between fermionic entangled states shared by observers, one of whom uniformly accelerates. We find that while fermionic entanglement persists for arbitrarily large acceleration, the Bell/CHSH inequalities cannot be violated for sufficiently large but finite acceleration. However the Svetlichny inequality, which is a measure of genuine tripartite non-locality, can be violated for any finite value of the acceleration.
Alice and Bob each have half of a pair of entangled qubits. Bob measures his half and then passes his qubit to a second Bob who measures again and so on. The goal is to maximize the number of Bobs that can have an expected violation of the Clauser-Horne-Shimony-Holt (CHSH) Bell inequality with the single Alice. This scenario was introduced in [Phys. Rev. Lett. 114, 250401 (2015)] where the authors mentioned evidence that when the Bobs act independently and with unbiased inputs then at most two of them can expect to violate the CHSH inequality with Alice. Here we show that, contrary to this evidence, arbitrarily many independent Bobs can have an expected CHSH violation with the single Alice. Our proof is constructive and our measurement strategies can be generalized to work with a larger class of two-qubit states that includes all pure entangled two-qubit states. Since violation of a Bell inequality is necessary for device-independent tasks, our work represents a step towards an eventual understanding of the limitations on how much device-independent randomness can be robustly generated from a single pair of qubits.
Entanglement and Bell nonlocality are used to describe quantum inseparabilities. Bell-nonlocal states form a strict subset of entangled states. A natural question arises concerning how much territory Bell nonlocality occupies entanglement for a general two-qubit entangled state. In this work, we investigate the relation between entanglement and Bell nonlocality by using lots of randomly generated two-qubit states, and give out a constraint inequality relation between the two quantum resources. For studying the upper or lower boundary of the inequality relation, we discover maximally (minimally) nonlocal entangled states, which maximize (minimize) the value of the Bell nonlocality for a given value of the entanglement. Futhermore, we consider a special kind of mixed state transformed by performing an arbitrary unitary operation on werner state. It is found that the special mixed states entanglement and Bell nonlocality are related to ones of a pure state transformed by the unitary operation performed on the Bell state.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا