Do you want to publish a course? Click here

Fast random number generator based on optical physical unclonable functions

193   0   0.0 ( 0 )
 Added by Dong Li
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

We propose an approach for fast random number generation based on homemade optical physical unclonable functions (PUFs). The optical PUF is illuminated with input laser wavefront of continuous modulation to obtain different speckle patterns. Random numbers are fully extracted from speckle patterns through a simple post-processing algorithm. Our proof-of-principle experiment achieves total random number generation rate of 0.96 Gbit/s with verified randomness, which is far faster than previous optical-PUF-based schemes. Our results demonstrate that the presented random number generator (RNG) proposal has great potential to achieve ultrafast random number generation rate up to several hundreds of Gbit/s.



rate research

Read More

Information security is of great importance for modern society with all things connected. Physical unclonable function (PUF) as a promising hardware primitive has been intensively studied for information security. However, the widely investigated silicon PUF with low entropy is vulnerable to various attacks. Herein, we introduce a concept of bionic optical PUFs inspired from unique biological architectures, and fabricate four types of bionic PUFs by molding the surface micro-nano structures of natural plant tissues with a simple, low-cost, green and environmentally friendly manufacturing process. The laser speckle responses of all bionic PUFs are statistically demonstrated to be random, unique, unpredictable and robust enough for cryptographic applications, indicating the broad applicability of bionic PUFs. On this ground, the feasibility of implementing bionic PUFs as cryptographic primitives in entity authentication and encrypted communication is experimentally validated, which shows its promising potential in the application of future information security.
The generation of random bits is of enormous importance in modern information science. Cryptographic security is based on random numbers which require a physical process for their generation. This is commonly performed by hardware random number generators. These exhibit often a number of problems, namely experimental bias, memory in the system, and other technical subtleties, which reduce the reliability in the entropy estimation. Further, the generated outcome has to be post-processed to iron out such spurious effects. Here, we present a purely optical randomness generator, based on the bi-stable output of an optical parametric oscillator. Detector noise plays no role and no further post-processing is required. Upon entering the bi-stable regime, initially the resulting output phase depends on vacuum fluctuations. Later, the phase is rigidly locked and can be well determined versus a pulse train, which is derived from the pump laser. This delivers an ambiguity-free output, which is reliably detected and associated with a binary outcome. The resulting random bit stream resembles a perfect coin toss and passes all relevant randomness measures. The random nature of the generated binary outcome is furthermore confirmed by an analysis of resulting conditional entropies.
We propose and demonstrate a scheme to realize a high-efficiency truly quantum random number generator (RNG) at room temperature (RT). Using an effective extractor with simple time bin encoding method, the avalanche pulses of avalanche photodiode (APD) are converted into high-quality random numbers (RNs) that are robust to slow varying noise such as fluctuations of pulse intensity and temperature. A light source is compatible but not necessary in this scheme. Therefor the robustness of the system is effective enhanced. The random bits generation rate of this proof-of-principle system is 0.69 Mbps with double APDs and 0.34 Mbps with single APD. The results indicate that a high-speed RNG chip based on the scheme is potentially available with an integrable APD array.
The scope of this paper is to demonstrate a fully working and compact photonic Physical Unclonable Function (PUF) device capable of operating in real life scenarios as an authentication mechanism and random number generator. For this purpose, an extensive experimental investigation of a Polymer Optical Fiber (POF) and a diffuser as PUF tokens is performed and the most significant properties are evaluated using the proper mathematical tools. Two different software algorithms, the Random Binary Method (RBM) and Singular Value Decomposition (SVD), were tested for optimized key extraction and error correction codes have been incorporated for enhancing key reproducibility. By taking into consideration the limitations and overall performance derived by the experimental evaluation of the system, the designing details towards the implementation of a miniaturized, energy efficient and low-cost device are extensively discussed. The performance of the final device is thoroughly evaluated, demonstrating a long-term stability of 1 week, an operating temperature range of 50C, an exponentially large pool of unique Challenge-Response Pairs (CRPs), recovery after power failure and capability of generating NIST compliant true random numbers.
279 - Wei Wei , J. W. Zhang , Tian Liu 2008
We propose an approach to realize a quantum random number generator (QRNG) based on the photon number decision of weak laser pulses. This type of QRNG can generate true random numbers at a high speed and can be adjusted to zero bias conveniently, thus is suitable for the applications in quantum cryptography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا