No Arabic abstract
We measured the equivalent width of a large set of near-infrared (NIR, 0.8--2.4$ mu$m) line-strength indices in the XShooter medium-resolution spectra of the central regions of 14 galaxies. We found that two aluminum indices Al at 1.31 $mu$m and Al1 at 1.67 $mu$m and the two CO indices CO1 at 1.56 $mu$m and CO4 at 1.64 $mu$m are tightly correlated with the velocity dispersion. Moreover, the NIR Al and CO1 indices show strong correlations with the optical Mg2 and Mgb indices, which are usually adopted as $alpha$/Fe-enhancement diagnostics. The molecular FeH1 index at 1.58 $mu$m tightly correlates with the optical <Fe> and [MgFe] indices, which are used as total metallicity diagnostics. The NIR Pa$beta$ index at 1.28 $mu$m has a behaviour similar to the optical H$beta$ index, which is a diagnostic of mean age. We defined two new composite indices, <Al> and [AlFeH], as possible candidates to be used as NIR diagnostics of total metallicity and $alpha$/Fe enhancement. The NIR <Al> index has a strong correlation with the optical Mg2 and Mgb indices, while the [AlFeH] index is tightly correlated with the optical <Fe> and [MgFe] indices. The distribution of the data points in the NIR Pa$beta$-<Al> and Pa$beta$-[AlFeH] diagrams mimic that in the optical [MgFe]-H$beta$ and the Mgb-<Fe> diagrams, which are widely used to constraint the properties of the unresolved stellar populations. We concluded that some NIR line-strength indices could be useful in studying stellar populations as well as in fine-tuning stellar population models.
A new generation of spectral synthesis models has been developed in the recent years, but there is no matching -- in terms of quality and resolution -- set of template galaxy spectra for testing and refining the new models. Our main goal is to find and calibrate new near-infrared spectral indices along the Hubble sequence of galaxies which will be used to obtain additional constraints to the population analysis based on medium resolution integrated spectra of galaxies. Spectra of previously studied and well understood galaxies with relatively simple stellar populations (e.g., ellipticals or bulge dominated galaxies) are needed to provide a baseline data set for spectral synthesis models. X-Shooter spectra spanning the optical and infrared wavelength (350-2400,nm) of bright nearby elliptical galaxies with resolving power $ Rsim$4000-5400 were obtained. Heliocentric systemic velocity, velocity dispersion and Mg, Fe and Hb line-strength indices are presented. We present a library of very high quality spectra of galaxies covering a large range of age, metallicity and morphological type. Such as a dataset of spectra will be crucial to address important questions of the modern investigation concerning galaxy formation and evolution.
Stellar population studies provide unique clues to constrain galaxy formation models. So far, detailed studies based on absorption line strengths have mainly focused on the optical spectral range although many diagnostic features are present in other spectral windows. In particular, the near-infrared (NIR) can provide a wealth of information about stars, such as evolved giants, that have less evident optical signatures. Due to significant advances in NIR instrumentation and extension of spectral libraries and stellar population synthesis (SPS) models to this domain, it is now possible to perform in-depth studies of spectral features in the NIR to a high level of precision. In the present work, taking advantage of state-of-the-art SPS models covering the NIR spectral range, we introduce a new set of NIR indices constructed to be maximally sensitive to the main stellar population parameters, namely age, metallicity and initial mass function (IMF). We fully characterize the new indices against these parameters as well as their sensitivity to individual elemental abundance variations, velocity dispersion broadening, wavelength shifts, signal-to-noise ratio and flux calibration. We also present, for the first time, a method to ensure that the analysis of spectral indices is not affected by sky contamination, which is a major challenge when dealing with NIR spectroscopy. Moreover, we discuss two main applications: (i) the ability of some NIR spectral indices to constrain the shape of the low-mass IMF and (ii) current issues in the analysis of NIR spectral indices for future developments of SPS modelling.
We want to develop spectral diagnostics of stellar populations in the near-infrared (NIR), for unresolved stellar populations. We created a semi-empirical population model and we compare the model output with the observed spectra of a sample of elliptical and bulge-dominated galaxies that have reliable Lick-indices from literature to test if the correlation between Mg2 and CO 1.62 micron remains valid in galaxies and to calibrate it as an abundance indicator. We find that (i) there are no significant correlations between any NIR feature and the optical Mg2; (ii) the CaI, NaI and CO trace the alpha-enhancement; and (iii) the NIR absorption features are not influenced by the galaxys age.
The evolution of AGB stars is notoriously complex. The confrontation of AGB population models with observed stellar populations is a useful alternative to the detailed study of individual stars in efforts to converge towards a reliable evolution theory. I review here the impact of studies of star clusters on AGB models and AGB population synthesis, deliberately leaving out any more complex stellar populations. Over the last 10 years, despite much effort, the absolute uncertainties in the predictions of the light emitted by intermediate age populations have not been reduced to a satisfactory level. Observational sample definitions, as well as the combination of the natural variance in AGB properties with small number statistics, are largely responsible for this situation. There is hope that the constraints may soon become strong enough, thanks to large unbiased surveys of star clusters, resolved colour-magnitude diagrams, and new analysis methods that can account for the stochastic nature of AGB populations in clusters.
We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (<4 Mpc), based on F110W and F160W images from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs sample both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in optical CMDs, and identify the red core Helium burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myrs old, suggesting that star formation can drive surprisingly rapid variations in the NIR mass-to-light ratio. The NIR luminosity of star forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual bright RHeB stars may be misidentified as old stellar clusters in low resolution imaging. We also discuss the CMD location of asymptotic giant branch (AGB) stars, and the separation of AGB sub-populations using a combination of optical and NIR colors. We empirically calibrate the NIR magnitude of the tip of the red giant branch (TRGB) as a function of color, allowing this widely adopted filter to be used for distance measurements. We find a clear trend between NIR RGB color and metallicity. However, it appears unlikely that the slope of the NIR RGB can be used as a metallicity indicator in extragalactic systems with comparable data. Finally, we discuss scattered light in the WFC3, which becomes significant for exposures taken close to a bright earth limb.