No Arabic abstract
We want to develop spectral diagnostics of stellar populations in the near-infrared (NIR), for unresolved stellar populations. We created a semi-empirical population model and we compare the model output with the observed spectra of a sample of elliptical and bulge-dominated galaxies that have reliable Lick-indices from literature to test if the correlation between Mg2 and CO 1.62 micron remains valid in galaxies and to calibrate it as an abundance indicator. We find that (i) there are no significant correlations between any NIR feature and the optical Mg2; (ii) the CaI, NaI and CO trace the alpha-enhancement; and (iii) the NIR absorption features are not influenced by the galaxys age.
We measured the equivalent width of a large set of near-infrared (NIR, 0.8--2.4$ mu$m) line-strength indices in the XShooter medium-resolution spectra of the central regions of 14 galaxies. We found that two aluminum indices Al at 1.31 $mu$m and Al1 at 1.67 $mu$m and the two CO indices CO1 at 1.56 $mu$m and CO4 at 1.64 $mu$m are tightly correlated with the velocity dispersion. Moreover, the NIR Al and CO1 indices show strong correlations with the optical Mg2 and Mgb indices, which are usually adopted as $alpha$/Fe-enhancement diagnostics. The molecular FeH1 index at 1.58 $mu$m tightly correlates with the optical <Fe> and [MgFe] indices, which are used as total metallicity diagnostics. The NIR Pa$beta$ index at 1.28 $mu$m has a behaviour similar to the optical H$beta$ index, which is a diagnostic of mean age. We defined two new composite indices, <Al> and [AlFeH], as possible candidates to be used as NIR diagnostics of total metallicity and $alpha$/Fe enhancement. The NIR <Al> index has a strong correlation with the optical Mg2 and Mgb indices, while the [AlFeH] index is tightly correlated with the optical <Fe> and [MgFe] indices. The distribution of the data points in the NIR Pa$beta$-<Al> and Pa$beta$-[AlFeH] diagrams mimic that in the optical [MgFe]-H$beta$ and the Mgb-<Fe> diagrams, which are widely used to constraint the properties of the unresolved stellar populations. We concluded that some NIR line-strength indices could be useful in studying stellar populations as well as in fine-tuning stellar population models.
A new generation of spectral synthesis models has been developed in the recent years, but there is no matching -- in terms of quality and resolution -- set of template galaxy spectra for testing and refining the new models. Our main goal is to find and calibrate new near-infrared spectral indices along the Hubble sequence of galaxies which will be used to obtain additional constraints to the population analysis based on medium resolution integrated spectra of galaxies. Spectra of previously studied and well understood galaxies with relatively simple stellar populations (e.g., ellipticals or bulge dominated galaxies) are needed to provide a baseline data set for spectral synthesis models. X-Shooter spectra spanning the optical and infrared wavelength (350-2400,nm) of bright nearby elliptical galaxies with resolving power $ Rsim$4000-5400 were obtained. Heliocentric systemic velocity, velocity dispersion and Mg, Fe and Hb line-strength indices are presented. We present a library of very high quality spectra of galaxies covering a large range of age, metallicity and morphological type. Such as a dataset of spectra will be crucial to address important questions of the modern investigation concerning galaxy formation and evolution.
A quantitative method is presented to compare observed and synthetic colour-magnitude diagrams (CMDs). The method is based on a chi^2 merit function for a point (c_i,m_i) in the observed CMD, which has a corresponding point in the simulated CMD within n*sigma(c_i,m_i) of the error ellipse. The chi^2 merit function is then combined with the Poisson merit function of the points for which no corresponding point was found within the n*sigma(c_i,m_i) error ellipse boundary. Monte-Carlo simulations are presented to demonstrate the diagnostics obtained from the combined (chi^2, Poisson) merit function through variation of different parameters in the stellar population synthesis tool. The simulations indicate that the merit function can potentially be used to reveal information about the initial mass function. Information about the star formation history of single stellar aggregates, such as open or globular clusters and possibly dwarf galaxies with a dominating stellar population, might not be reliable if one is dealing with a relatively small age range.
To study the stellar population of local infrared galaxies, which contain star-forming galaxies, composite galaxies, LINERs, and Seyfert 2s. We also want to find whether infrared luminosity and spectral class have any effects on their stellar populations. The sample galaxies are selected from the main galaxy sample of SDSS-DR4 and then cross-correlated with the IRAS-PSCz catalog. We fit our spectra (stellar absorption lines and continua) using the spectral synthesis code STARLIGHT on the base of the templates of Simple Stellar Population and the spectra of star clusters.Among the 4 spectral classes, LINERs present the oldest stellar populations, and the other 3 sub-samples all present substantial young and intermediate age populations and very few old populations. The importance of young populations decreases from star-forming, composite, Seyfert 2 to LINER. As to different infrared luminosity bins, ULIGs & LIGs (log($L_{IR}/L_{odot})geq$11) present younger populations than starbursts and normal galaxies. However, the dominant contributors to mass are old populations in all sample galaxies. The fittings by using the spectra of star clusters with different ages and metallicities as templates also give consistent results. The dominated populations in star-forming and composite galaxies are those with metallicity $Z=0.2Z_odot$, while LINERs and Seyfert 2s are more metal-rich. The normal galaxies are more metal-rich than the ULIGs & LIGs and starbursts for the star-forming galaxies within different infrared luminosity bins. Additionally, we also compare some synthesis results with other parameters obtained from the MPA/JHU catalog.
We present near-infrared (NIR) color-magnitude diagrams (CMDs) for the resolved stellar populations within 26 fields of 23 nearby galaxies (<4 Mpc), based on F110W and F160W images from Wide Field Camera 3 (WFC3) on the Hubble Space Telescope (HST). The CMDs sample both old dormant and young star-forming populations. We match key NIR CMD features with their counterparts in optical CMDs, and identify the red core Helium burning (RHeB) sequence as a significant contributor to the NIR flux in stellar populations younger than a few 100 Myrs old, suggesting that star formation can drive surprisingly rapid variations in the NIR mass-to-light ratio. The NIR luminosity of star forming galaxies is therefore not necessarily proportional to the stellar mass. We note that these individual bright RHeB stars may be misidentified as old stellar clusters in low resolution imaging. We also discuss the CMD location of asymptotic giant branch (AGB) stars, and the separation of AGB sub-populations using a combination of optical and NIR colors. We empirically calibrate the NIR magnitude of the tip of the red giant branch (TRGB) as a function of color, allowing this widely adopted filter to be used for distance measurements. We find a clear trend between NIR RGB color and metallicity. However, it appears unlikely that the slope of the NIR RGB can be used as a metallicity indicator in extragalactic systems with comparable data. Finally, we discuss scattered light in the WFC3, which becomes significant for exposures taken close to a bright earth limb.