Do you want to publish a course? Click here

On the Effective Rate of NOMA in Underlay Spectrum Sharing

129   0   0.0 ( 0 )
 Added by Vaibhav Kumar
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

In this paper, we present the delay-constrained performance analysis of a multi-antenna-assisted multiuser non-orthogonal multiple access (NOMA) based spectrum sharing system over Rayleigh fading channels. We derive analytical expressions for the sum effective rate (ER) for the downlink NOMA system under a peak interference constraint. In particular, we show the effect of the availability of different levels of channel state information (instantaneous and statistical) on the system performance. We also show the effect of different parameters of interest, including the peak tolerable interference power, the delay exponent, the number of antennas and the number of users, on the sum ER of the system under consideration. An excellent agreement between simulation and theoretical results confirms the accuracy of the analysis.



rate research

Read More

Non-orthogonal multiple access (NOMA) and spectrum sharing are two potential technologies for providing massive connectivity in beyond fifth-generation (B5G) networks. In this paper, we present the performance analysis of a multi-antenna-assisted two-user downlink NOMA system in an underlay spectrum sharing system. We derive closed-form expressions for the average achievable sum-rate and outage probability of the secondary network under a peak interference constraint and/or peak power constraint, depending on the availability of channel state information (CSI) of the interference link between secondary transmitter (ST) and primary receiver (PR). For the case where the ST has a fixed power budget, we show that performance can be divided into two specific regimes, where either the interference constraint or the power constraint primarily dictates the performance. Our results confirm that the NOMA-based underlay spectrum sharing system significantly outperforms its orthogonal multiple access (OMA) based counterpart, by achieving higher average sum-rate and lower outage probability. We also show the effect of information loss at the ST in terms of CSI of the link between the ST and PR on the system performance. Moreover, we also present closed-form expressions for the optimal power allocation coefficient that minimizes the outage probability of the NOMA system for the special case where the secondary users are each equipped with a single antenna. A close agreement between the simulation and analytical results confirms the correctness of the presented analysis.
In this paper, we present the ergodic sum secrecy rate (ESSR) analysis of an underlay spectrum sharing non-orthogonal multiple access (NOMA) system. We consider the scenario where the power transmitted by the secondary transmitter (ST) is constrained by the peak tolerable interference at multiple primary receivers (PRs) as well as the maximum transmit power of the ST. The effect of channel estimation error is also taken into account in our analysis. We derive exact and asymptotic closed-form expressions for the ESSR of the downlink NOMA system, and show that the performance can be classified into two distinct regimes, i.e., it is dictated either by the interference constraint or by the power constraint. Our results confirm the superiority of the NOMA-based system over its orthogonal multiple access (OMA) based counterpart. More interestingly, our results show that NOMA helps in maintaining the secrecy rate of the strong user while significantly enhancing the secrecy performance of the weak user as compared to OMA. The correctness of the proposed investigation is corroborated through Monte Carlo simulation.
Non-orthogonal multiple access (NOMA) is a potential candidate to further enhance the spectrum utilization efficiency in beyond fifth-generation (B5G) standards. However, there has been little attention on the quantification of the delay-limited performance of downlink NOMA systems. In this paper, we analyze the performance of a two-user downlink NOMA system over generalized {alpha}-{mu} fading in terms of delay violation probability (DVP) and effective rate (ER). In particular, we derive an analytical expression for an upper bound on the DVP and we derive the exact sum ER of the downlink NOMA system. We also derive analytical expressions for high and low signal-to-noise ratio (SNR) approximations to the sum ER, as well as a fundamental upper bound on the sum ER which represents the ergodic sum-rate for the downlink NOMA system. We also analyze the sum ER of a corresponding time-division-multiplexed orthogonal multiple access (OMA) system. Our results show that while NOMA consistently outperforms OMA over the practical SNR range, the relative gain becomes smaller in more severe fading conditions, and is also smaller in the presence a more strict delay quality-of-service (QoS) constraint.
In this work, we study underlay radar-massive MIMO cellular coexistence in LoS/near-LoS channels, where both systems have 3D beamforming capabilities. Using mathematical tools from stochastic geometry, we derive an upper bound on the average interference power at the radar due to the 3D massive MIMO cellular downlink under the worst-case `cell-edge beamforming conditions. To overcome the technical challenges imposed by asymmetric and arbitrarily large cells, we devise a novel construction in which each Poisson Voronoi (PV) cell is bounded by its circumcircle to bound the effect of the random cell shapes on average interference. Since this model is intractable for further analysis due to the correlation between adjacent PV cells shapes and sizes, we propose a tractable nominal interference model, where we model each PV cell as a circular disk with an area equal to the average area of the typical cell. We quantify the gap in the average interference power between these two models and show that the upper bound is tight for realistic deployment parameters. We also compare them with a more practical but intractable MU-MIMO scheduling model to show that our worst-case interference models show the same trends and do not deviate significantly from realistic scheduler models. Under the nominal interference model, we characterize the interference distribution using the dominant interferer approximation by deriving the equi-interference contour expression when the typical receiver uses 3D beamforming. Finally, we use tractable expressions for the interference distribution to characterize radars spatial probability of false alarm/detection in a quasi-static target tracking scenario. Our results reveal useful trends in the average interference as a function of the deployment parameters (BS density, exclusion zone radius, antenna height, transmit power of each BS, etc.).
Visible light communications (VLC) is gaining interest as one of the enablers of short-distance, high-data-rate applications, in future beyond 5G networks. Moreover, non-orthogonal multiple-access (NOMA)-enabled schemes have recently emerged as a promising multiple-access scheme for these networks that would allow realization of the target spectral efficiency and user fairness requirements. The integration of NOMA in the widely adopted orthogonal frequency-division multiplexing (OFDM)-based VLC networks would require an optimal resource allocation for the pair or the cluster of users sharing the same subcarrier(s). In this paper, the max-min rate of a multi-cell indoor centralized VLC network is maximized through optimizing user pairing, subcarrier allocation, and power allocation. The joint complex optimization problem is tackled using a low-complexity solution. At first, the user pairing is assumed to follow the divide-and-next-largest-difference user-pairing algorithm (D-NLUPA) that can ensure fairness among the different clusters. Then, subcarrier allocation and power allocation are solved iteratively through both the Simulated Annealing (SA) meta-heuristic algorithm and the bisection method. The obtained results quantify the achievable max-min user rates for the different relevant variants of NOMA-enabled schemes and shed new light on both the performance and design of multi-user multi-carrier NOMA-enabled centralized VLC networks.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا