Do you want to publish a course? Click here

On the performance of downlink NOMA in underlay spectrum sharing

82   0   0.0 ( 0 )
 Added by Vaibhav Kumar
 Publication date 2020
and research's language is English




Ask ChatGPT about the research

Non-orthogonal multiple access (NOMA) and spectrum sharing are two potential technologies for providing massive connectivity in beyond fifth-generation (B5G) networks. In this paper, we present the performance analysis of a multi-antenna-assisted two-user downlink NOMA system in an underlay spectrum sharing system. We derive closed-form expressions for the average achievable sum-rate and outage probability of the secondary network under a peak interference constraint and/or peak power constraint, depending on the availability of channel state information (CSI) of the interference link between secondary transmitter (ST) and primary receiver (PR). For the case where the ST has a fixed power budget, we show that performance can be divided into two specific regimes, where either the interference constraint or the power constraint primarily dictates the performance. Our results confirm that the NOMA-based underlay spectrum sharing system significantly outperforms its orthogonal multiple access (OMA) based counterpart, by achieving higher average sum-rate and lower outage probability. We also show the effect of information loss at the ST in terms of CSI of the link between the ST and PR on the system performance. Moreover, we also present closed-form expressions for the optimal power allocation coefficient that minimizes the outage probability of the NOMA system for the special case where the secondary users are each equipped with a single antenna. A close agreement between the simulation and analytical results confirms the correctness of the presented analysis.

rate research

Read More

In this paper, we present the ergodic sum secrecy rate (ESSR) analysis of an underlay spectrum sharing non-orthogonal multiple access (NOMA) system. We consider the scenario where the power transmitted by the secondary transmitter (ST) is constrained by the peak tolerable interference at multiple primary receivers (PRs) as well as the maximum transmit power of the ST. The effect of channel estimation error is also taken into account in our analysis. We derive exact and asymptotic closed-form expressions for the ESSR of the downlink NOMA system, and show that the performance can be classified into two distinct regimes, i.e., it is dictated either by the interference constraint or by the power constraint. Our results confirm the superiority of the NOMA-based system over its orthogonal multiple access (OMA) based counterpart. More interestingly, our results show that NOMA helps in maintaining the secrecy rate of the strong user while significantly enhancing the secrecy performance of the weak user as compared to OMA. The correctness of the proposed investigation is corroborated through Monte Carlo simulation.
128 - Vaibhav Kumar , Zhiguo Ding , 2021
In this paper, we present the delay-constrained performance analysis of a multi-antenna-assisted multiuser non-orthogonal multiple access (NOMA) based spectrum sharing system over Rayleigh fading channels. We derive analytical expressions for the sum effective rate (ER) for the downlink NOMA system under a peak interference constraint. In particular, we show the effect of the availability of different levels of channel state information (instantaneous and statistical) on the system performance. We also show the effect of different parameters of interest, including the peak tolerable interference power, the delay exponent, the number of antennas and the number of users, on the sum ER of the system under consideration. An excellent agreement between simulation and theoretical results confirms the accuracy of the analysis.
Different from public 4G/5G networks that are dominated by downlink traffic, emerging 5G non-public networks (NPNs) need to support significant uplink traffic to enable emerging applications such as industrial Internet of things (IIoT). The uplink-and-downlink spectrum sharing is becoming a viable solution to enhance the uplink throughput of NPNs, which allows the NPNs to perform the uplink transmission over the time-frequency resources configured for downlink transmission in coexisting public networks. To deal with the severe interference from the downlink public base station (BS) transmitter to the coexisting uplink non-public BS receiver, we propose an adaptive asymmetric successive interference cancellation (SIC) approach, in which the non-public BS receiver is enabled to have the capability of decoding the downlink signals transmitted from the public BS and successively cancelling them for interference mitigation. In particular, this paper studies a basic uplink-and-downlink spectrum sharing scenario when an uplink non-public BS and a downlink public BS coexist in the same area, each communicating with multiple users via orthogonal frequency-division multiple access (OFDMA). Under this setup, we aim to maximize the common uplink throughput of all non-public users, under the condition that the downlink throughput of each public user is above a certain threshold. The decision variables include the subcarrier allocation and user scheduling for both non-public (uplink) and public (downlink) BSs, the decoding mode of the non-public BS over each subcarrier (i.e., with or without SIC), as well as the rate and power control over subcarriers. Numerical results show that the proposed adaptive asymmetric SIC design significantly improves the common uplink throughput as compared to benchmark schemes without such design.
The fundamental power allocation requirements for NOMA systems with minimum quality of service (QoS) requirements are investigated. For any minimum QoS rate $R_0$, the limits on the power allocation coefficients for each user are derived, such that any power allocation coefficient outside of these limits creates an outage with probability equal to 1. The power allocation coefficients that facilitate each users success of performing successive interference cancellation (SIC) and decoding its own signal are derived, and are found to depend only on the target rate $R_0$ and the number of total users $K$. It is then proven that using these power allocation coefficients create the same outage event as if using orthogonal multiple access (OMA), which proves that the outage performance of NOMA with a fixed-power scheme can matched that of OMA for all users simultaneously. Simulations confirm the theoretical results, and also demonstrate that a power allocation strategy exists that can improve the outage performance of NOMA over OMA, even with a fixed-power strategy.
We study the performance of cognitive Underlay System (US) that employ power control mechanism at the Secondary Transmitter (ST) from a deployment perspective. Existing baseline models considered for performance analysis either assume the knowledge of involved channels at the ST or retrieve this information by means of a band manager or a feedback channel, however, such situations rarely exist in practice. Motivated by this fact, we propose a novel approach that incorporates estimation of the involved channels at the ST, in order to characterize the performance of the US in terms of interference power received at the primary receiver and throughput at the secondary receiver (or textit{secondary throughput}). Moreover, we apply an outage constraint that captures the impact of imperfect channel knowledge, particularly on the uncertain interference. Besides this, we employ a transmit power constraint at the ST to classify the operation of the US in terms of an interference-limited regime and a power-limited regime. In addition, we characterize the expressions of the uncertain interference and the secondary throughput for the case where the involved channels encounter Nakagami-$m$ fading. Finally, we investigate a fundamental tradeoff between the estimation time and the secondary throughput depicting an optimized performance of the US.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا