No Arabic abstract
The problem of maximising the number of cliques among $n$-vertex graphs from various graph classes has received considerable attention. We investigate this problem for the class of $1$-planar graphs where we determine precisely the maximum total number of cliques as well as the maximum number of cliques of any fixed size. We also precisely characterise the extremal graphs for these problems.
For a planar graph $H$, let $operatorname{mathbf{N}}_{mathcal P}(n,H)$ denote the maximum number of copies of $H$ in an $n$-vertex planar graph. In this paper, we prove that $operatorname{mathbf{N}}_{mathcal P}(n,P_7)sim{4over 27}n^4$, $operatorname{mathbf{N}}_{mathcal P}(n,C_6)sim(n/3)^3$, $operatorname{mathbf{N}}_{mathcal P}(n,C_8)sim(n/4)^4$ and $operatorname{mathbf{N}}_{mathcal P}(n,K_4{1})sim(n/6)^6$, where $K_4{1}$ is the $1$-subdivision of $K_4$. In addition, we obtain significantly improved upper bounds on $operatorname{mathbf{N}}_{mathcal P}(n,P_{2m+1})$ and $operatorname{mathbf{N}}_{mathcal P}(n,C_{2m})$ for $mgeq 4$. For a wide class of graphs $H$, the key technique developed in this paper allows us to bound $operatorname{mathbf{N}}_{mathcal P}(n,H)$ in terms of an optimization problem over weighted graphs.
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every {sl proper} colouring of its edges yields a {sl rainbow} copy of $H$. We study the thresholds for such so-called {sl anti-Ramsey} properties in randomly perturbed dense graphs, which are unions of the form $G cup mathbb{G}(n,p)$, where $G$ is an $n$-vertex graph with edge-density at least $d$, and $d$ is a constant that does not depend on $n$. Our results in this paper, combined with our results in a companion paper, determine the threshold for the property $G cup mathbb{G}(n,p) stackrel{mathrm{rbw}}{longrightarrow} K_s$ for every $s$. In this paper, we show that for $s geq 9$ the threshold is $n^{-1/m_2(K_{leftlceil s/2 rightrceil})}$; in fact, our $1$-statement is a supersaturation result. This turns out to (almost) be the threshold for $s=8$ as well, but for every $4 leq s leq 7$, the threshold is lower; see our companion paper for more details. In this paper, we also consider the property $G cup mathbb{G}(n,p) stackrel{mathrm{rbw}}{longrightarrow} C_{2ell - 1}$, and show that the threshold for this property is $n^{-2}$ for every $ell geq 2$; in particular, it does not depend on the length of the cycle $C_{2ell - 1}$. It is worth mentioning that for even cycles, or more generally for any fixed bipartite graph, no random edges are needed at all.
For two graphs $G$ and $H$, write $G stackrel{mathrm{rbw}}{longrightarrow} H$ if $G$ has the property that every emph{proper} colouring of its edges yields a emph{rainbow} copy of $H$. We study the thresholds for such so-called emph{anti-Ramsey} properties in randomly perturbed dense graphs, which are unions of the form $G cup mathbb{G}(n,p)$, where $G$ is an $n$-vertex graph with edge-density at least $d >0$, and $d$ is independent of $n$. In a companion article, we proved that the threshold for the property $G cup mathbb{G}(n,p) stackrel{mathrm{rbw}}{longrightarrow} K_ell$ is $n^{-1/m_2(K_{leftlceil ell/2 rightrceil})}$, whenever $ell geq 9$. For smaller $ell$, the thresholds behave more erratically, and for $4 le ell le 7$ they deviate downwards significantly from the aforementioned aesthetic form capturing the thresholds for emph{large} cliques. In particular, we show that the thresholds for $ell in {4, 5, 7}$ are $n^{-5/4}$, $n^{-1}$, and $n^{-7/15}$, respectively. For $ell in {6, 8}$ we determine the threshold up to a $(1 + o(1))$-factor in the exponent: they are $n^{-(2/3 + o(1))}$ and $n^{-(2/5 + o(1))}$, respectively. For $ell = 3$, the threshold is $n^{-2}$; this follows from a more general result about odd cycles in our companion paper.
Hakimi, Schmeichel, and Thomassen in 1979 conjectured that every $4$-connected planar triangulation $G$ on $n$ vertices has at least $2(n-2)(n-4)$ Hamiltonian cycles, with equality if and only if $G$ is a double wheel. In this paper, we show that every $4$-connected planar triangulation on $n$ vertices has $Omega(n^2)$ Hamiltonian cycles. Moreover, we show that if $G$ is a $4$-connected planar triangulation on $n$ vertices and the distance between any two vertices of degree $4$ in $G$ is at least $3$, then $G$ has $2^{Omega(n^{1/4})}$ Hamiltonian cycles.
We prove that $s_r(K_k) = O(k^5 r^{5/2})$, where $s_r(K_k)$ is the Ramsey parameter introduced by Burr, ErdH{o}s and Lov{a}sz in 1976, which is defined as the smallest minimum degree of a graph $G$ such that any $r$-colouring of the edges of $G$ contains a monochromatic $K_k$, whereas no proper subgraph of $G$ has this property. The construction used in our proof relies on a group theoretic model of generalised quadrangles introduced by Kantor in 1980.