Do you want to publish a course? Click here

Multi-task Balanced and Recalibrated Network for Medical Code Prediction

93   0   0.0 ( 0 )
 Added by Shaoxiong Ji
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Human coders assign standardized medical codes to clinical documents generated during patients hospitalization, which is error-prone and labor-intensive. Automated medical coding approaches have been developed using machine learning methods such as deep neural networks. Nevertheless, automated medical coding is still challenging because of the imbalanced class problem, complex code association, and noise in lengthy documents. To solve these difficulties, we propose a novel neural network called Multi-task Balanced and Recalibrated Neural Network. Significantly, the multi-task learning scheme shares the relationship knowledge between different code branches to capture the code association. A recalibrated aggregation module is developed by cascading convolutional blocks to extract high-level semantic features that mitigate the impact of noise in documents. Also, the cascaded structure of the recalibrated module can benefit the learning from lengthy notes. To solve the class imbalanced problem, we deploy the focal loss to redistribute the attention of low and high-frequency medical codes. Experimental results show that our proposed model outperforms competitive baselines on a real-world clinical dataset MIMIC-III.



rate research

Read More

Medical coding translates professionally written medical reports into standardized codes, which is an essential part of medical information systems and health insurance reimbursement. Manual coding by trained human coders is time-consuming and error-prone. Thus, automated coding algorithms have been developed, building especially on the recent advances in machine learning and deep neural networks. To solve the challenges of encoding lengthy and noisy clinical documents and capturing code associations, we propose a multitask recalibrated aggregation network. In particular, multitask learning shares information across different coding schemes and captures the dependencies between different medical codes. Feature recalibration and aggregation in shared modules enhance representation learning for lengthy notes. Experiments with a real-world MIMIC-III dataset show significantly improved predictive performance.
74 - Elisa Gugliotta 2020
In this paper we propose a multi-task sequence prediction system, based on recurrent neural networks and used to annotate on multiple levels an Arabizi Tunisian corpus. The annotation performed are text classification, tokenization, PoS tagging and encoding of Tunisian Arabizi into CODA* Arabic orthography. The system is learned to predict all the annotation levels in cascade, starting from Arabizi input. We evaluate the system on the TIGER German corpus, suitably converting data to have a multi-task problem, in order to show the effectiveness of our neural architecture. We show also how we used the system in order to annotate a Tunisian Arabizi corpus, which has been afterwards manually corrected and used to further evaluate sequence models on Tunisian data. Our system is developed for the Fairseq framework, which allows for a fast and easy use for any other sequence prediction problem.
Medical code assignment, which predicts medical codes from clinical texts, is a fundamental task of intelligent medical information systems. The emergence of deep models in natural language processing has boosted the development of automatic assignment methods. However, recent advanced neural architectures with flat convolutions or multi-channel feature concatenation ignore the sequential causal constraint within a text sequence and may not learn meaningful clinical text representations, especially for lengthy clinical notes with long-term sequential dependency. This paper proposes a Dilated Convolutional Attention Network (DCAN), integrating dilated convolutions, residual connections, and label attention, for medical code assignment. It adopts dilated convolutions to capture complex medical patterns with a receptive field which increases exponentially with dilation size. Experiments on a real-world clinical dataset empirically show that our model improves the state of the art.
Medical code assignment from clinical text is a fundamental task in clinical information system management. As medical notes are typically lengthy and the medical coding systems code space is large, this task is a long-standing challenge. Recent work applies deep neural network models to encode the medical notes and assign medical codes to clinical documents. However, these methods are still ineffective as they do not fully encode and capture the lengthy and rich semantic information of medical notes nor explicitly exploit the interactions between the notes and codes. We propose a novel method, gated convolutional neural networks, and a note-code interaction (GatedCNN-NCI), for automatic medical code assignment to overcome these challenges. Our methods capture the rich semantic information of the lengthy clinical text for better representation by utilizing embedding injection and gated information propagation in the medical note encoding module. With a novel note-code interaction design and a graph message passing mechanism, we explicitly capture the underlying dependency between notes and codes, enabling effective code prediction. A weight sharing scheme is further designed to decrease the number of trainable parameters. Empirical experiments on real-world clinical datasets show that our proposed model outperforms state-of-the-art models in most cases, and our model size is on par with light-weighted baselines.
Automatic speech recognition (ASR) systems in the medical domain that focus on transcribing clinical dictations and doctor-patient conversations often pose many challenges due to the complexity of the domain. ASR output typically undergoes automatic punctuation to enable users to speak naturally, without having to vocalise awkward and explicit punctuation commands, such as period, add comma or exclamation point, while truecasing enhances user readability and improves the performance of downstream NLP tasks. This paper proposes a conditional joint modeling framework for prediction of punctuation and truecasing using pretrained masked language models such as BERT, BioBERT and RoBERTa. We also present techniques for domain and task specific adaptation by fine-tuning masked language models with medical domain data. Finally, we improve the robustness of the model against common errors made in ASR by performing data augmentation. Experiments performed on dictation and conversational style corpora show that our proposed model achieves ~5% absolute improvement on ground truth text and ~10% improvement on ASR outputs over baseline models under F1 metric.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا