No Arabic abstract
In this paper, an energy-based discontinuous Galerkin method for dynamic Euler-Bernoulli beam equations is developed. The resulting method is energy-dissipating or energy-conserving depending on the simple, mesh-independent choice of numerical fluxes. By introducing a velocity field, the original problem is transformed into a first-order in time system. In our formulation, the discontinuous Galerkin approximations for the original displacement field and the auxiliary velocity field are not restricted to be in the same space. In particular, a given accuracy can be achieved with the fewest degrees of freedom when the degree for the approximation space of the velocity field is two orders lower than the degree of approximation space for the displacement field. In addition, we establish the error estimates in an energy norm and demonstrate the corresponding optimal convergence in numerical experiments.
In this paper, we develop an oscillation free local discontinuous Galerkin (OFLDG) method for solving nonlinear degenerate parabolic equations. Following the idea of our recent work [J. Lu, Y. Liu, and C.-W. Shu, SIAM J. Numer. Anal. 59(2021), pp. 1299-1324.], we add the damping terms to the LDG scheme to control the spurious oscillations when solutions have a large gradient. The $L^2$-stability and optimal priori error estimates for the semi-discrete scheme are established. The numerical experiments demonstrate that the proposed method maintains the high-order accuracy and controls the spurious oscillations well.
Numerical simulation of flow problems and wave propagation in heterogeneous media has important applications in many engineering areas. However, numerical solutions on the fine grid are often prohibitively expensive, and multiscale model reduction techniques are introduced to efficiently solve for an accurate approximation on the coarse grid. In this paper, we propose an energy minimization based multiscale model reduction approach in the discontinuous Galerkin discretization setting. The main idea of the method is to extract the non-decaying component in the high conductivity regions by identifying dominant modes with small eigenvalues of local spectral problems, and define multiscale basis functions in coarse oversampled regions by constraint energy minimization problems. The multiscale basis functions are in general discontinuous on the coarse grid and coupled by interior penalty discontinuous Galerkin formulation. The minimal degree of freedom in representing high-contrast features is achieved through the design of local spectral problems, which provides the most compressed local multiscale space. We analyze the method for solving Darcy flow problem and show that the convergence is linear in coarse mesh size and independent of the contrast, provided that the oversampling size is appropriately chosen. Numerical results are presented to show the performance of the method for simulation on flow problem and wave propagation in high-contrast heterogeneous media.
This paper proposes and analyzes an ultra-weak local discontinuous Galerkin scheme for one-dimensional nonlinear biharmonic Schr{o}dinger equations. We develop the paradigm of the local discontinuous Galerkin method by introducing the second-order spatial derivative as an auxiliary variable instead of the conventional first-order derivative. The proposed semi-discrete scheme preserves a few physically relevant properties such as the conservation of mass and the conservation of Hamiltonian accompanied by its stability for the targeted nonlinear biharmonic Schr{o}dinger equations. We also derive optimal $L^2$-error estimates of the scheme that measure both the solution and the auxiliary variable. Several numerical studies demonstrate and support our theoretical findings.
In this work we consider Runge-Kutta discontinuous Galerkin methods (RKDG) for the solution of hyperbolic equations enabling high order discretization in space and time. We aim at an efficient implementation of DG for Euler equations on GPUs. A mesh curvature approach is presented for the proper resolution of the domain boundary. This approach is based on the linear elasticity equations and enables a boundary approximation with arbitrary, high order. In order to demonstrate the performance of the boundary curvature a massively parallel solver on graphics processors is implemented and utilized for the solution of the Euler equations of gas-dynamics.
In this paper, we develop a well-balanced oscillation-free discontinuous Galerkin (OFDG) method for solving the shallow water equations with a non-flat bottom topography. One notable feature of the constructed scheme is the well-balanced property, which preserves exactly the hydrostatic equilibrium solutions up to machine error. Another feature is the non-oscillatory property, which is very important in the numerical simulation when there exist some shock discontinuities. To control the spurious oscillations, we construct an OFDG method with an extra damping term to the existing well-balanced DG schemes proposed in [Y. Xing and C.-W. Shu, CICP, 1(2006), 100-134.]. With a careful construction of the damping term, the proposed method achieves both the well-balanced property and non-oscillatory property simultaneously without compromising any order of accuracy. We also present a detailed procedure for the construction and a theoretical analysis for the preservation of the well-balancedness property. Extensive numerical experiments including one- and two-dimensional space demonstrate that the proposed methods possess the desired properties without sacrificing any order of accuracy.