Do you want to publish a course? Click here

ZELDA: fitting Lyman-alpha line profiles using deep learning

65   0   0.0 ( 0 )
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present zELDA(redshift Estimator for Line profiles of Distant Lyman-Alpha emitters), an open source code to fit Lyman-Alpha (Lya) line profiles. The main motivation is to provide the community with an easy to use and fast tool to analyze Lya line profiles uniformly to improve the understating of Lya emitting galaxies. zELDA is based on line profiles of the commonly used shell-model pre-computed with the full Monte Carlo radiative transfer code LyaRT. Via interpolation between these spectra and the addition of noise, we assemble a suite of realistic Lya spectra which we use to train a deep neural network. We show that the neural network can predict the model parameters to high accuracy (e.g.,.0.34 dex HI column density for R=12000) and thus allows for a significant speedup over existing fitting methods. As a proof of concept, we demonstrate the potential of zELDA by fitting 97 observed Lya line profiles from the LASD data base. Comparing the fitted value with the measured systemic redshift of these sources, we find that Lya determines their rest frame Lya wavelength with a remarkable good accuracy of 0.3A (75 km/s). Comparing the predicted outflow properties and the observed Lya luminosity and equivalent width, we find several possible trends. For example, we find an anticorrelation between the Lya luminosity and the outflow neutral hydrogen column density, which might be explained by the radiative transfer process within galaxies



rate research

Read More

We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broadband g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
We use broadband photometry extending from the rest-frame UV to the near-IR to fit the individual spectral energy distributions (SEDs) of 63 bright (L(Ly-alpha) > 10^43 ergs/s) Ly-alpha emitting galaxies (LAEs) in the redshift range 1.9 < z < 3.6. We find that these LAEs are quite heterogeneous, with stellar masses that span over three orders of magnitude, from 7.5 < log M < 10.5. Moreover, although most LAEs have small amounts of extinction, some high-mass objects have stellar reddenings as large as E(B-V) ~0.4. Interestingly, in dusty objects the optical depths for Ly-alpha and the UV continuum are always similar, indicating that Ly-alpha photons are not undergoing many scatters before escaping their galaxy. In contrast, the ratio of optical depths in low-reddening systems can vary widely, illustrating the diverse nature of the systems. Finally, we show that in the star formation rate (SFR)-log mass diagram, our LAEs fall above the main-sequence defined by z ~ 3 continuum selected star-forming galaxies. In this respect, they are similar to sub-mm-selected galaxies, although most LAEs have much lower mass.
We compare the low redshift (z ~ 0.1) Lyman-alpha forest from hydrodynamical simulations with data from the Cosmic Origin Spectrograph (COS). We find tension between the observed number of lines with b-parameters in the range 25-45 km/s and the predictions from simulations that incorporate either vigorous feedback from active galactic nuclei or that exclude feedback altogether. The gas in these simulations is, respectively, either too hot to contribute to the Lyman-alpha absorption or too cold to produce the required line widths. Matching the observed b-parameter distribution therefore requires feedback processes that thermally or turbulently broaden the absorption features without collisionally (over-)ionising hydrogen. This suggests the Lyman-alpha forest b-parameter distribution is a valulable diagnostic of galactic feedback in the low redshift Universe. We furthermore confirm the low redshift Lyman-alpha forest column density distribution is better reproduced by an ultraviolet background with an HI photo-ionisation rate a factor 1.5-3 higher than predicted by Haardt & Madau (2012).
471 - Y. Ao , Y. Matsuda , A. Beelen 2015
Lyman alpha blobs (LABs) are spatially extended lyman alpha nebulae seen at high redshift. The origin of Lyman alpha emission in the LABs is still unclear and under debate. To study their heating mechanism(s), we present Australia Telescope Compact Array (ATCA) observations of the 20 cm radio emission and Herschel PACS and SPIRE measurements of the far-infrared (FIR) emission towards the four LABs in the protocluster J2143-4423 at z=2.38. Among the four LABs, B6 and B7 are detected in the radio with fluxes of 67+/-17 microJy and 77+/-16 microJy, respectively, and B5 is marginally detected at 3 sigma (51+/-16 microJy). For all detected sources, their radio positions are consistent with the central positions of the LABs. B6 and B7 are obviously also detected in the FIR. By fitting the data with different templates, we obtained redshifts of 2.20$^{+0.30}_{-0.35}$ for B6 and 2.20$^{+0.45}_{-0.30}$ for B7 which are consistent with the redshift of the lyman alpha emission within uncertainties, indicating that both FIR sources are likely associated with the LABs. The associated FIR emission in B6 and B7 and high star formation rates strongly favor star formation in galaxies as an important powering source for the lyman alpha emission in both LABs. However, the other two, B1 and B5, are predominantly driven by the active galactic nuclei or other sources of energy still to be specified, but not mainly by star formation. In general, the LABs are powered by quite diverse sources of energy.
We compare the physical and morphological properties of z ~ 2 Lyman-alpha emitting galaxies (LAEs) identified in the HETDEX Pilot Survey and narrow band studies with those of z ~ 2 optical emission line galaxies (oELGs) identified via HST WFC3 infrared grism spectroscopy. Both sets of galaxies extend over the same range in stellar mass (7.5 < logM < 10.5), size (0.5 < R < 3.0 kpc), and star-formation rate (~1 < SFR < 100). Remarkably, a comparison of the most commonly used physical and morphological parameters -- stellar mass, half-light radius, UV slope, star formation rate, ellipticity, nearest neighbor distance, star formation surface density, specific star formation rate, [O III] luminosity, and [O III] equivalent width -- reveals no statistically significant differences between the populations. This suggests that the processes and conditions which regulate the escape of Ly-alpha from a z ~ 2 star-forming galaxy do not depend on these quantities. In particular, the lack of dependence on the UV slope suggests that Ly-alpha emission is not being significantly modulated by diffuse dust in the interstellar medium. We develop a simple model of Ly-alpha emission that connects LAEs to all high-redshift star forming galaxies where the escape of Ly-alpha depends on the sightline through the galaxy. Using this model, we find that mean solid angle for Ly-alpha escape is 2.4+/-0.8 steradians; this value is consistent with those calculated from other studies.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا