No Arabic abstract
We compare the low redshift (z ~ 0.1) Lyman-alpha forest from hydrodynamical simulations with data from the Cosmic Origin Spectrograph (COS). We find tension between the observed number of lines with b-parameters in the range 25-45 km/s and the predictions from simulations that incorporate either vigorous feedback from active galactic nuclei or that exclude feedback altogether. The gas in these simulations is, respectively, either too hot to contribute to the Lyman-alpha absorption or too cold to produce the required line widths. Matching the observed b-parameter distribution therefore requires feedback processes that thermally or turbulently broaden the absorption features without collisionally (over-)ionising hydrogen. This suggests the Lyman-alpha forest b-parameter distribution is a valulable diagnostic of galactic feedback in the low redshift Universe. We furthermore confirm the low redshift Lyman-alpha forest column density distribution is better reproduced by an ultraviolet background with an HI photo-ionisation rate a factor 1.5-3 higher than predicted by Haardt & Madau (2012).
We provide an analytical description of the line broadening of HI absorbers in the Lyman-alpha forest resulting from Doppler broadening and Jeans smoothing. We demonstrate that our relation captures the dependence of the line-width on column density for narrow lines in z~3 mock spectra remarkably well. Broad lines at a given column density arise when the underlying density structure is more complex, and such clustering is not captured by our model. Our understanding of the line broadening opens the way to a new method to characterise the thermal state of the intergalactic medium and to determine the sizes of the absorbing structures.
We report on a search for ultraluminous Lyman alpha emitting galaxies (LAEs) at z=6.6 using the NB921 filter on Hyper Suprime-Cam on the Subaru telescope. We searched a 30 degree squared area around the North Ecliptic Pole, which we observed in broadband g, r, i, z, and y and narrowband NB816 and NB921, for sources with NB921 < 23.5 and z - NB921 > 1.3. This corresponds to a selection of log L(Ly-alpha) > 43.5 erg/s. We followed up seven candidate LAEs (out of thirteen) with the Keck DEIMOS spectrograph and confirmed five z=6.6 LAEs, one z=6.6 AGN with a broad Ly-alpha line and a strong red continuum, and one low-redshift ([OIII]5007) galaxy. The five ultraluminous LAEs have wider line profiles than lower luminosity LAEs, and one source, NEPLA4, has a complex line profile similar to that of COLA1. In combination with previous results, we show that the line profiles of the z=6.6 ultraluminous LAEs are systematically different than those of lower luminosity LAEs at this redshift. This result suggests that ultraluminous LAEs generate highly ionized regions of the intergalactic medium in their vicinity that allow the full Lyman alpha profile of the galaxy---including any blue wings---to be visible. If this interpretation is correct, then ultraluminous LAEs offer a unique opportunity to determine the properties of the ionized zones around them, which will help in understanding the ionization of the z ~ 7 intergalactic medium. A simple calculation gives a very rough estimate of 0.015 for the escape fraction of ionizing photons, but more sophisticated calculations are needed to fully characterize the uncertainties.
With the Multi Unit Spectroscopic Explorer (MUSE), it is now possible to detect spatially extended Lyman alpha emission from individual faint (M_UV ~ -18) galaxies at redshifts, 3 < z < 6, tracing gas out to circum-galactic scales comparable to the dark matter halo virial radius. To explore the implications of such observations, we present a cosmological radiation hydrodynamics simulation of a single galaxy, chosen to be typical of the Lyman alpha-emitting galaxies detected by MUSE in deep fields. We use this simulation to study the origin and dynamics of the high-redshift circum-galactic medium (CGM). We find that the majority of the mass in the diffuse CGM is comprised of material infalling for the first time towards the halo center, but with the inner CGM also containing a comparable amount of mass that has moved past first-pericentric passage, and is in the process of settling into a rotationally supported configuration. Making the connection to Lyman alpha emission, we find that the observed extended surface brightness profile is due to a combination of three components: scattering of galactic Lyman alpha emission in the CGM, in-situ emission of CGM gas (mostly infalling), and Lyman alpha emission from small satellite galaxies. The weight of these contributions vary with distance from the galaxy such that (1) scattering dominates the inner regions (r < 7 kpc), at surface brightness larger than a few 10^-19 cgs, (2) all components contribute equally around r ~ 10 kpc (or SB ~10^-19), and (3) the contribution of small satellite galaxies takes over at large distances (or SB ~10^-20). Our simulation fails to reproduce the characteristic observed Lyman alpha spectral morphology that is red-shifted with respect to the systemic velocity, with the implication that the simulation is missing an important component of neutral outflowing gas.
The Baryon Oscillation Spectroscopic Survey (BOSS) has collected more than 150,000 $2.1 leq z leq 3.5$ quasar spectra since 2009. Using this unprecedented sample, we create a composite spectrum in the rest-frame of 102,150 quasar spectra from 800 AA to 3300 AA at a signal-to-noise ratio close to 1000 per pixel ($Delta v$ of 69 km~s$^{-1}$). Included in this analysis is a correction to account for flux calibration residuals in the BOSS spectrophotometry. We determine the spectral index as a function of redshift of the full sample, warp the composite spectrum to match the median spectral index, and compare the resulting spectrum to SDSS photometry used in target selection. The quasar composite matches the color of the quasar population to within 0.02 magnitudes in $g-r$, 0.03 magnitudes in $r-i$, and 0.01 magnitudes in $i-z$ over the redshift range $2.2<z<2.6$. The composite spectrum deviates from the imaging photometry by 0.05 magnitudes around $z = 2.7$, likely due to differences in target selection as the quasar colors become similar to the stellar locus at this redshift. Finally, we characterize the line features in the high signal-to-noise composite and identify nine faint lines not found in the previous composite spectrum from SDSS.
Mapping the intergalactic medium (IGM) in Lyman-$alpha$ emission would yield unprecedented tomographic information on the large-scale distribution of baryons and potentially provide new constraints on the UV background and various feedback processes relevant to galaxy formation. Here, we use a cosmological hydrodynamical simulation to examine the Lyman-$alpha$ emission of the IGM due to collisional excitations and recombinations in the presence of a UV background. We focus on gas in large-scale-structure filaments in which Lyman-$alpha$ radiative transfer effects are expected to be moderate. At low density the emission is primarily due to fluorescent re-emission of the ionising UV background due to recombinations, while collisional excitations dominate at higher densities. We discuss prospects of current and future observational facilities to detect this emission and find that the emission of filaments of the cosmic web will typically be dominated by the halos and galaxies embedded in them, rather than by the lower density filament gas outside halos. Detecting filament gas directly would require a very long exposure with a MUSE-like instrument on the ELT. Our most robust predictions that act as lower limits indicate this would be slightly less challenging at lower redshifts ($z lesssim 4$). We also find that there is a large amount of variance between fields in our mock observations. High-redshift protoclusters appear to be the most promising environment to observe the filamentary IGM in Lyman-$alpha$ emission.