Do you want to publish a course? Click here

Closed $ EP $ and Hypo-$ EP $ Operators on Hilbert Spaces

82   0   0.0 ( 0 )
 Added by P Sam Johnson
 Publication date 2021
  fields
and research's language is English




Ask ChatGPT about the research

A bounded linear operator $ A$ on a Hilbert space $ mathcal H $ is said to be an $ EP $ (hypo-$ EP $) operator if ranges of $ A $ and $ A^* $ are equal (range of $ A $ is contained in range of $ A^* $) and $ A $ has a closed range. In this paper, we define $EP$ and hypo-$EP$ operators for densely defined closed linear operators on Hilbert spaces and extend results from bounded operator settings to (possibly unbounded) closed operator settings.



rate research

Read More

126 - Fapeng Du , Yifeng Xue 2013
In this paper, we investigate the perturbation for the Moore-Penrose inverse of closed operators on Hilbert spaces. By virtue of a new inner product defined on $H$, we give the expression of the Moore-Penrose inverse $bar{T}^dag$ and the upper bounds of $|bar{T}^dag|$ and $|bar{T}^dag -T^dag|$. These results obtained in this paper extend and improve many related results in this area.
We study generalized polar decompositions of densely defined, closed linear operators in Hilbert spaces and provide some applications to relatively (form) bounded and relatively (form) compact perturbations of self-adjoint, normal, and m-sectorial operators.
Fuglede-Putnam theorem is not true in general for $ EP $ operators on Hilbert spaces. We prove that under some conditions the theorem holds good. If the adjoint operation is replaced by Moore-Penrose inverse in the theorem, we get Fuglede-Putnam type theorem for $ EP $ operators -- however proofs are totally different. Finally, interesting results on $ EP $ operators have been proved using sever
A notion of resolvent set for an operator acting in a rigged Hilbert space $D subset Hsubset D^times$ is proposed. This set depends on a family of intermediate locally convex spaces living between $D$ and $D^times$, called interspaces. Some properties of the resolvent set and of the corresponding multivalued resolvent function are derived and some examples are discussed.
Let $G$ be a locally compact abelian group with a Haar measure, and $Y$ be a measure space. Suppose that $H$ is a reproducing kernel Hilbert space of functions on $Gtimes Y$, such that $H$ is naturally embedded into $L^2(Gtimes Y)$ and is invariant under the translations associated with the elements of $G$. Under some additional technical assumptions, we study the W*-algebra $mathcal{V}$ of translation-invariant bounded linear operators acting on $H$. First, we decompose $mathcal{V}$ into the direct integral of the W*-algebras of bounded operators acting on the reproducing kernel Hilbert spaces $widehat{H}_xi$, $xiinwidehat{G}$, generated by the Fourier transform of the reproducing kernel. Second, we give a constructive criterion for the commutativity of $mathcal{V}$. Third, in the commutative case, we construct a unitary operator that simultaneously diagonalizes all operators belonging to $mathcal{V}$, i.e., converts them into some multiplication operators. Our scheme generalizes many examples previously studied by Nikolai Vasilevski and other authors.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا