No Arabic abstract
The $W$ boson mass is measured using proton-proton collision data at $sqrt{s}=13$ TeV corresponding to an integrated luminosity of 1.7 fb$^{-1}$ recorded during 2016 by the LHCb experiment. With a simultaneous fit of the muon $q/p_T$ distribution of a sample of $W to mu u$ decays and the $phi^*$ distribution of a sample of $Ztomumu$ decays the $W$ boson mass is determined to be begin{equation*} m_{W} = 80354 pm 23_{rm stat} pm 10_{rm exp} pm 17_{rm theory} pm 9_{rm PDF}~mathrm{MeV}, end{equation*} where uncertainties correspond to contributions from statistical, experimental systematic, theoretical and parton distribution function sources. This is an average of results based on three recent global parton distribution function sets. The measurement agrees well with the prediction of the global electroweak fit and with previous measurements.
The Standard Model of electroweak interactions has had great success in describing the observed data over the last three decades. The precision of experimental measurements affords tests of the Standard Model at the quantum loop level beyond leading order. Despite this great success it is important to continue confronting experimental measurements with the Standard Model predictions as any deviation would signal new physics. As a fundamental parameter of the Standard Model, the mass of the W-boson, M_W, is of particular importance. Aside from being an important test of the SM itself, a precision measurement of M_W can be used to constrain the mass of the Higgs boson, M_H. In this article we review the principal experimental techniques for determining M_W and discuss their combination into a single precision M_W measurement, which is then used to yield constraints on M_H. We conclude by briefly discussing future prospects for precision measurements of the W-boson mass.
We present a measurement of the $W$-boson mass, $M_W$, using data corresponding to 2.2/fb of integrated luminosity collected in ppbar collisions at $sqrt{s}$ = 1.96 TeV with the CDF II detector at the Fermilab Tevatron. The selected sample of 470126 $Wto e u$ candidates and 624708 $Wtomu u$ candidates yields the measurement $M_W = 80387pm 12$ (stat) $pm 15$ (syst)$ = 80387 pm 19$ MeV$/c^2$ . This is the most precise single measurement of the $W$-boson mass to date.
The mass of the W boson has been measured by the LEP collaborations from the data recorded during the LEP2 programme at e+ e- centre of mass energies from 161 to 209 GeV, giving the result : mw = 80.450 +/- 0.039 GeV/c^2. This paper discusses the measurements of the W Mass from direct reconstruction of the invariant mass of the WW decay products, particular emphasis is placed on the evaluation of systematic errors. Results on the direct measurement of the W width are also presented.
We summarize and combine direct measurements of the mass of the $W$ boson in $sqrt{s} = 1.96 text{TeV}$ proton-antiproton collision data collected by CDF and D0 experiments at the Fermilab Tevatron Collider. Earlier measurements from CDF and D0 are combined with the two latest, more precise measurements: a CDF measurement in the electron and muon channels using data corresponding to $2.2 mathrm{fb}^{-1}$ of integrated luminosity, and a D0 measurement in the electron channel using data corresponding to $4.3 mathrm{fb}^{-1}$ of integrated luminosity. The resulting Tevatron average for the mass of the $W$ boson is $MW = 80,387 pm 16 text{MeV}$. Including measurements obtained in electron-positron collisions at LEP yields the most precise value of $MW = 80,385 pm 15 text{MeV}$.
The determination of the $W$-boson mass through an analysis of the decay charged-lepton transverse momentum distribution has a sizable uncertainty due to the imperfect knowledge of the relevant parton distribution functions (PDFs). In this paper, a quantitative assessment of the $W$-boson mass uncertainty at the LHC resulting from the PDF uncertainty is examined. We use the CT14 NNLO PDFs with a NNLL + NNLO calculation (ResBos) to simulate the $W$-boson production and decay kinematics. The uncertainty of the $W$-boson mass determination is then determined as a function of the boson and lepton kinematics. For $W^{+}$ production using $P_{T}^{W} < 15$ GeV and $35 < P_{T}^{l}$ (GeV) $< 45$, PDF uncertainties (at the 68% CL) of $^{+16.0}_{-17.5}$ MeV, $^{+13.9}_{-14.8}$ MeV, and $^{+12.2}_{-19.2}$ MeV, are determined at 7 TeV, 8 TeV and 13 TeV respectively. The uncertainties of $W^{-}$ for the same cuts are found to be $^{+15.9}_{-15.6}$ MeV, $^{+15.0}_{-12.7}$ MeV and $^{+14.8}_{-15.3}$ MeV, at 7 TeV, 8 TeV and 13 TeV respectively.