Do you want to publish a course? Click here

The Current State of Undergraduate Bayesian Education and Recommendations for the Future

126   0   0.0 ( 0 )
 Added by Jingchen Hu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

With the advances in tools and the rise of popularity, Bayesian statistics is becoming more important for undergraduates. In this study, we surveyed whether an undergraduate Bayesian course is offered or not in our sample of 152 high-ranking research universities and liberal arts colleges. For each identified Bayesian course, we examined how it fits into the institutions undergraduate curricula, such as majors and prerequisites. Through a series of course syllabi analyses, we explored the topics covered and their popularity in these courses, the adopted teaching and learning tools, such as software. This paper presents our findings on the current practices of Bayesian education at the undergraduate level. Based on our findings, we provide recommendations for programs that may consider offering Bayesian education to their students.



rate research

Read More

The Park City Math Institute (PCMI) 2016 Summer Undergraduate Faculty Program met for the purpose of composing guidelines for undergraduate programs in Data Science. The group consisted of 25 undergraduate faculty from a variety of institutions in the U.S., primarily from the disciplines of mathematics, statistics and computer science. These guidelines are meant to provide some structure for institutions planning for or revising a major in Data Science.
A freely available educational application (a mobile website) is presented. This provides access to educational material and drilling on selected topics within mathematics and statistics with an emphasis on tablets and mobile phones. The application adapts to the students performance, selecting from easy to difficult questions, or older material etc. These adaptations are based on statistical models and analyses of data from testing precursors of the system within several courses, from calculus and introductory statistics through multiple linear regression. The application can be used in both on-line and off-line modes. The behavior of the application is determined by parameters, the effects of which can be estimated statistically. Results presented include analyses of how the internal algorithms relate to passing a course and general incremental improvement in knowledge during a semester.
We present a programmatic approach to incorporating ethics into an undergraduate major in statistical and data sciences. We discuss departmental-level initiatives designed to meet the National Academy of Sciences recommendation for integrating ethics into the curriculum from top-to-bottom as our majors progress from our introductory courses to our senior capstone course, as well as from side-to-side through co-curricular programming. We also provide six examples of data science ethics modules used in five different courses at our liberal arts college, each focusing on a different ethical consideration. The modules are designed to be portable such that they can be flexibly incorporated into existing courses at different levels of instruction with minimal disruption to syllabi. We present assessments of our efforts and conclude with next steps and final thoughts.
The increased digitalisation and monitoring of the energy system opens up numerous opportunities to decarbonise the energy system. Applications on low voltage, local networks, such as community energy markets and smart storage will facilitate decarbonisation, but they will require advanced control and management. Reliable forecasting will be a necessary component of many of these systems to anticipate key features and uncertainties. Despite this urgent need, there has not yet been an extensive investigation into the current state-of-the-art of low voltage level forecasts, other than at the smart meter level. This paper aims to provide a comprehensive overview of the landscape, current approaches, core applications, challenges and recommendations. Another aim of this paper is to facilitate the continued improvement and advancement in this area. To this end, the paper also surveys some of the most relevant and promising trends. It establishes an open, community-driven list of the known low voltage level open datasets to encourage further research and development.
A learning environment, the tutor-web (http://tutor-web.net), has been developed and used for educational research. The system is accessible and free to use for anyone having access to the Web. It is based on open source software and the teaching material is licensed under the Creative Commons Attribution-ShareAlike License. The system has been used for computer-assisted education in statistics and mathematics. It offers a unique way to structure and link together teaching material and includes interactive quizzes with the primary purpose of increasing learning rather than mere evaluation. The system was used in a course on basic statistics in the University of Iceland, spring 2013. A randomized trial was conducted to investigate the difference in learning between students doing regular homework and students using the system. The difference between the groups was not found to be significant.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا