Do you want to publish a course? Click here

A review of computational tools for generating metagenome-assembled genomes from metagenomic sequencing data

194   0   0.0 ( 0 )
 Added by Chao Yang
 Publication date 2021
  fields Biology
and research's language is English




Ask ChatGPT about the research

Microbes are essentially yet convolutedly linked with human lives on the earth. They critically interfere in different physiological processes and thus influence overall health status. Studying microbial species is used to be constrained to those that can be cultured in the lab. But it excluded a huge portion of the microbiome that could not survive on lab conditions. In the past few years, the culture-independent metagenomic sequencing enabled us to explore the complex microbial community coexisting within and on us. Metagenomics has equipped us with new avenues of investigating the microbiome, from studying a single species to a complex community in a dynamic ecosystem. Thus, identifying the involved microbes and their genomes becomes one of the core tasks in metagenomic sequencing. Metagenome-assembled genomes are groups of contigs with similar sequence characteristics from de novo assembly and could represent the microbial genomes from metagenomic sequencing. In this paper, we reviewed a spectrum of tools for producing and annotating metagenome-assembled genomes from metagenomic sequencing data and discussed their technical and biological perspectives.



rate research

Read More

91 - Jie Liu , Xiaotian Wu , Kai Zhang 2020
With the booming of next generation sequencing technology and its implementation in clinical practice and life science research, the need for faster and more efficient data analysis methods becomes pressing in the field of sequencing. Here we report on the evaluation of an optimized germline mutation calling pipeline, HummingBird, by assessing its performance against the widely accepted BWA-GATK pipeline. We found that the HummingBird pipeline can significantly reduce the running time of the primary data analysis for whole genome sequencing and whole exome sequencing while without significantly sacrificing the variant calling accuracy. Thus, we conclude that expansion of such software usage will help to improve the primary data analysis efficiency for next generation sequencing.
The existence of doublets is a key confounder in single-cell RNA sequencing (scRNA-seq) data analysis. Computational methods have been developed for detecting doublets from scRNA-seq data. We developed an R package DoubletCollection to integrate the installation and execution of eight doublet-detection methods. DoubletCollection also provides a unified interface to perform and visualize downstream analysis after doublet detection. Here, we present a protocol of using DoubletCollection to benchmark doublet-detection methods. This protocol can automatically accommodate new doublet-detection methods in the fast-growing scRNA-seq field.
Motivation: Bisulphite sequencing enables the detection of cytosine methylation. The sequence of the methylation states of cytosines on any given read forms a methylation pattern that carries substantially more information than merely studying the average methylation level at individual positions. In order to understand better the complexity of DNA methylation landscapes in biological samples, it is important to study the diversity of these methylation patterns. However, the accurate quantification of methylation patterns is subject to sequencing errors and spurious signals due to incomplete bisulphite conversion of cytosines. Results: A statistical model is developed which accounts for the distribution of DNA methylation patterns at any given locus. The model incorporates the effects of sequencing errors and spurious reads, and enables estimation of the true underlying distribution of methylation patterns. Conclusions: Calculation of the estimated distribution over methylation patterns is implemented in the R Bioconductor package MPFE. Source code and documentation of the package are also available for download at http://bioconductor.org/packages/3.0/bioc/html/MPFE.html.
Background: Since the invention of next-generation RNA sequencing (RNA-seq) technologies, they have become a powerful tool to study the presence and quantity of RNA molecules in biological samples and have revolutionized transcriptomic studies. The analysis of RNA-seq data at four different levels (samples, genes, transcripts, and exons) involve multiple statistical and computational questions, some of which remain challenging up to date. Results: We review RNA-seq analysis tools at the sample, gene, transcript, and exon levels from a statistical perspective. We also highlight the biological and statistical questions of most practical considerations. Conclusion: The development of statistical and computational methods for analyzing RNA- seq data has made significant advances in the past decade. However, methods developed to answer the same biological question often rely on diverse statical models and exhibit different performance under different scenarios. This review discusses and compares multiple commonly used statistical models regarding their assumptions, in the hope of helping users select appropriate methods as needed, as well as assisting developers for future method development.
This paper introduces a high-throughput software tool framework called {it sam2bam} that enables users to significantly speedup pre-processing for next-generation sequencing data. The sam2bam is especially efficient on single-node multi-core large-memory systems. It can reduce the runtime of data pre-processing in marking duplicate reads on a single node system by 156-186x compared with de facto standard tools. The sam2bam consists of parallel software components that can fully utilize the multiple processors, available memory, high-bandwidth of storage, and hardware compression accelerators if available. The sam2bam provides file format conversion between well-known genome file formats, from SAM to BAM, as a basic feature. Additional features such as analyzing, filtering, and converting the input data are provided by {it plug-in} tools, e.g., duplicate marking, which can be attached to sam2bam at runtime. We demonstrated that sam2bam could significantly reduce the runtime of NGS data pre-processing from about two hours to about one minute for a whole-exome data set on a 16-core single-node system using up to 130 GB of memory. The sam2bam could reduce the runtime for whole-genome sequencing data from about 20 hours to about nine minutes on the same system using up to 711 GB of memory.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا