Do you want to publish a course? Click here

Finiteness and Duality for the cohomology of prismatic crystals

154   0   0.0 ( 0 )
 Added by Yichao Tian
 Publication date 2021
  fields
and research's language is English
 Authors Yichao Tian




Ask ChatGPT about the research

Let $(A, I)$ be a bounded prism, and $X$ be a smooth $p$-adic formal scheme over $Spf(A/I)$. We consider the notion of crystals on Bhatt--Scholzes prismatic site $(X/A)_{prism}$ of $X$ relative to $A$. We prove that if $X$ is proper over $Spf(A/I)$ of relative dimension $n$, then the cohomology of a prismatic crystal is a perfect complex of $A$-modules with tor-amplitude in degrees $[0,2n]$. We also establish a Poincare duality for the reduced prismatic crystals, i.e. the crystals over the reduced structural sheaf of $(X/A)_{prism}$. The key ingredient is an explicit local description of reduced prismatic crystals in terms of Higgs modules.



rate research

Read More

112 - Davide Franco 2020
We prove that the $0$-th local cohomology of the jacobian ring of a projective hypersurface with isolated singularities has a nice interpretation it in the context of linkage theory. Roughly speaking, it represents a measure of the failure of Gherardellis theorem for the corresponding graded modules. This leads us to a different and characteristic free proof of its self-duality, which turns out to be an easy consequence of Grothendiecks local duality theorem.
We define, for each quasi-syntomic ring $R$ (in the sense of Bhatt-Morrow-Scholze), a category $mathrm{DF}(R)$ of textit{filtered prismatic Dieudonne crystals over $R$} and a natural functor from $p$-divisible groups over $R$ to $mathrm{DF}(R)$. We prove that this functor is an antiequivalence. Our main cohomological tool is the prismatic formalism recently developed by Bhatt and Scholze.
93 - Ljudmila Kamenova 2016
This paper is a survey of finiteness results in hyperkahler geometry. We review some classical theorems by Sullivan, Kollar-Matsusaka, Huybrechts, as well as theorems in the recent literature by Charles, Sawon, and joint results of the author with Verbitsky. We also strengthen a finiteness theorem of the author. These are extended notes of the authors talk during the closing conference of the Simons Semester in the Banach Center in Bc{e}dlewo, Poland.
75 - Zhiyou Wu 2021
We prove that both local Galois representations and $(varphi,Gamma)$-modules can be recovered from prismatic F-crystals, from which we obtain a new proof of the equivalence of Galois representations and $(varphi,Gamma)$-modules.
Let fa be an ideal of a commutative Noetherian ring R and M a finitely generated R-module. We explore the behavior of the two notions f_{fa}(M), the finiteness dimension of M with respect to fa, and, its dual notion q_{fa}(M), the Artinianess dimension of M with respect to fa. When (R,fm) is local and r:=f_{fa}(M) is less than f_{fa}^{fm}(M), the fm-finiteness dimension of M relative to fa, we prove that H^r_{fa}(M) is not Artinian, and so the filter depth of fa on M doesnt exceeds f_{fa}(M). Also, we show that if M has finite dimension and H^i_{fa}(M) is Artinian for all i>t, where t is a given positive integer, then H^t_{fa}(M)/fa H^t_{fa}(M) is Artinian. It immediately implies that if q:=q_{fa}(M)>0, then H^q_{fa}(M) is not finitely generated, and so f_{fa}(M)leq q_{fa}(M).
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا