Do you want to publish a course? Click here

Online Testing of Subgroup Treatment Effects Based on Value Difference

76   0   0.0 ( 0 )
 Added by Miao Yu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Online A/B testing plays a critical role in the high-tech industry to guide product development and accelerate innovation. It performs a null hypothesis statistical test to determine which variant is better. However, a typical A/B test presents two problems: (i) a fixed-horizon framework inflates the false-positive errors under continuous monitoring; (ii) the homogeneous effects assumption fails to identify a subgroup with a beneficial treatment effect. In this paper, we propose a sequential test for subgroup treatment effects based on value difference, named SUBTLE, to address these two problems simultaneously. The SUBTLE allows the experimenters to peek at the results during the experiment without harming the statistical guarantees. It assumes heterogeneous treatment effects and aims to test if some subgroup of the population will benefit from the investigative treatment. If the testing result indicates the existence of such a subgroup, a subgroup will be identified using a readily available estimated optimal treatment rule. We examine the empirical performance of our proposed test on both simulations and a real dataset. The results show that the SUBTLE has high detection power with controlled type I error at any time, is more robust to noise covariates, and can achieve early stopping compared with the corresponding fixed-horizon test.



rate research

Read More

49 - Derek Feng , Xiaofei Wang 2016
Given two possible treatments, there may exist subgroups who benefit greater from one treatment than the other. This problem is relevant to the field of marketing, where treatments may correspond to different ways of selling a product. It is similarly relevant to the field of public policy, where treatments may correspond to specific government programs. And finally, personalized medicine is a field wholly devoted to understanding which subgroups of individuals will benefit from particular medical treatments. We present a computationally fast tree-based method, ABtree, for treatment effect differentiation. Unlike other methods, ABtree specifically produces decision rules for optimal treatment assignment on a per-individual basis. The treatment choices are selected for maximizing the overall occurrence of a desired binary outcome, conditional on a set of covariates. In this poster, we present the methodology on tree growth and pruning, and show performance results when applied to simulated data as well as real data.
88 - Ziyu Xu , Aaditya Ramdas 2020
We derive new algorithms for online multiple testing that provably control false discovery exceedance (FDX) while achieving orders of magnitude more power than previous methods. This statistical advance is enabled by the development of new algorithmic ideas: earlier algorithms are more static while our new ones allow for the dynamical adjustment of testing levels based on the amount of wealth the algorithm has accumulated. We demonstrate that our algorithms achieve higher power in a variety of synthetic experiments. We also prove that SupLORD can provide error control for both FDR and FDX, and controls FDR at stopping times. Stopping times are particularly important as they permit the experimenter to end the experiment arbitrarily early while maintaining desired control of the FDR. SupLORD is the first non-trivial algorithm, to our knowledge, that can control FDR at stopping times in the online setting.
The empirical literature on program evaluation limits its scope almost exclusively to models where treatment effects are homogenous for observationally identical individuals. This paper considers a treatment effect model in which treatment effects may be heterogeneous, even among observationally identical individuals. Specifically, extending the classical instrumental variables (IV) model with an endogenous binary treatment and a binary instrument, we allow the heteroskedasticity of the error disturbance to also depend upon the treatment variable so that treatment has both mean and variance effects on the outcome. In this endogenous heteroskedasticity IV (EHIV) model with heterogeneous individual treatment effects, the standard IV estimator can be inconsistent and lead to incorrect inference. After showing identification of the mean and variance treatment effects in a nonparametric version of the EHIV model, we provide closed-form estimators for the linear EHIV for the mean and variance treatment effects and the individual treatment effects (ITE). Asymptotic properties of the estimators are provided. A Monte Carlo simulation investigates the performance of the proposed approach, and an empirical application regarding the effects of fertility on female labor supply is considered.
Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects that incorporates high-dimensional covariates. Our estimator combines a debiased $ell_1$-penalized regression adjustment with a quantile-specific covariate balancing scheme. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to the sum of two independent, centered Gaussian processes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of mothers education on infant birth weights.
142 - Shuo Sun , Erica E. M. Moodie , 2021
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, rather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا