Do you want to publish a course? Click here

Inference on Heterogeneous Quantile Treatment Effects via Rank-Score Balancing

100   0   0.0 ( 0 )
 Added by Alexander Giessing
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Understanding treatment effect heterogeneity in observational studies is of great practical importance to many scientific fields because the same treatment may affect different individuals differently. Quantile regression provides a natural framework for modeling such heterogeneity. In this paper, we propose a new method for inference on heterogeneous quantile treatment effects that incorporates high-dimensional covariates. Our estimator combines a debiased $ell_1$-penalized regression adjustment with a quantile-specific covariate balancing scheme. We present a comprehensive study of the theoretical properties of this estimator, including weak convergence of the heterogeneous quantile treatment effect process to the sum of two independent, centered Gaussian processes. We illustrate the finite-sample performance of our approach through Monte Carlo experiments and an empirical example, dealing with the differential effect of mothers education on infant birth weights.



rate research

Read More

142 - Shuo Sun , Erica E. M. Moodie , 2021
Analyses of environmental phenomena often are concerned with understanding unlikely events such as floods, heatwaves, droughts or high concentrations of pollutants. Yet the majority of the causal inference literature has focused on modelling means, rather than (possibly high) quantiles. We define a general estimator of the population quantile treatment (or exposure) effects (QTE) -- the weighted QTE (WQTE) -- of which the population QTE is a special case, along with a general class of balancing weights incorporating the propensity score. Asymptotic properties of the proposed WQTE estimators are derived. We further propose and compare propensity score regression and two weighted methods based on these balancing weights to understand the causal effect of an exposure on quantiles, allowing for the exposure to be binary, discrete or continuous. Finite sample behavior of the three estimators is studied in simulation. The proposed methods are applied to data taken from the Bavarian Danube catchment area to estimate the 95% QTE of phosphorus on copper concentration in the river.
458 - Yichong Zhang , Xin Zheng 2018
In this paper, we study the estimation and inference of the quantile treatment effect under covariate-adaptive randomization. We propose two estimation methods: (1) the simple quantile regression and (2) the inverse propensity score weighted quantile regression. For the two estimators, we derive their asymptotic distributions uniformly over a compact set of quantile indexes, and show that, when the treatment assignment rule does not achieve strong balance, the inverse propensity score weighted estimator has a smaller asymptotic variance than the simple quantile regression estimator. For the inference of method (1), we show that the Wald test using a weighted bootstrap standard error under-rejects. But for method (2), its asymptotic size equals the nominal level. We also show that, for both methods, the asymptotic size of the Wald test using a covariate-adaptive bootstrap standard error equals the nominal level. We illustrate the finite sample performance of the new estimation and inference methods using both simulated and real datasets.
Understanding treatment heterogeneity is essential to the development of precision medicine, which seeks to tailor medical treatments to subgroups of patients with similar characteristics. One of the challenges to achieve this goal is that we usually do not have a priori knowledge of the grouping information of patients with respect to treatment. To address this problem, we consider a heterogeneous regression model by assuming that the coefficient for treatment variables are subject-dependent and belong to different subgroups with unknown grouping information. We develop a concave fusion penalized method for automatically estimating the grouping structure and the subgroup-specific treatment effects, and derive an alternating direction method of multipliers algorithm for its implementation. We also study the theoretical properties of the proposed method and show that under suitable conditions there exists a local minimizer that equals the oracle least squares estimator with a priori knowledge of the true grouping information with high probability. This provides theoretical support for making statistical inference about the subgroup-specific treatment effects based on the proposed method. We evaluate the performance of the proposed method by simulation studies and illustrate its application by analyzing the data from the AIDS Clinical Trials Group Study.
For many kinds of interventions, such as a new advertisement, marketing intervention, or feature recommendation, it is important to target a specific subset of people for maximizing its benefits at minimum cost or potential harm. However, a key challenge is that no data is available about the effect of such a prospective intervention since it has not been deployed yet. In this work, we propose a split-treatment analysis that ranks the individuals most likely to be positively affected by a prospective intervention using past observational data. Unlike standard causal inference methods, the split-treatment method does not need any observations of the target treatments themselves. Instead it relies on observations of a proxy treatment that is caused by the target treatment. Under reasonable assumptions, we show that the ranking of heterogeneous causal effect based on the proxy treatment is the same as the ranking based on the target treatments effect. In the absence of any interventional data for cross-validation, Split-Treatment uses sensitivity analyses for unobserved confounding to select model parameters. We apply Split-Treatment to both a simulated data and a large-scale, real-world targeting task and validate our discovered rankings via a randomized experiment for the latter.
Understanding how treatment effects vary on individual characteristics is critical in the contexts of personalized medicine, personalized advertising and policy design. When the characteristics are of practical interest are only a subset of full covariate, non-parametric estimation is often desirable; but few methods are available due to the computational difficult. Existing non-parametric methods such as the inverse probability weighting methods have limitations that hinder their use in many practical settings where the values of propensity scores are close to 0 or 1. We propose the propensity score regression (PSR) that allows the non-parametric estimation of the heterogeneous treatment effects in a wide context. PSR includes two non-parametric regressions in turn, where it first regresses on the propensity scores together with the characteristics of interest, to obtain an intermediate estimate; and then, regress the intermediate estimates on the characteristics of interest only. By including propensity scores as regressors in the non-parametric manner, PSR is capable of substantially easing the computational difficulty while remain (locally) insensitive to any value of propensity scores. We present several appealing properties of PSR, including the consistency and asymptotical normality, and in particular the existence of an explicit variance estimator, from which the analytical behaviour of PSR and its precision can be assessed. Simulation studies indicate that PSR outperform existing methods in varying settings with extreme values of propensity scores. We apply our method to the national 2009 flu survey (NHFS) data to investigate the effects of seasonal influenza vaccination and having paid sick leave across different age groups.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا