No Arabic abstract
The Expected Shortfall (ES) is one of the most important regulatory risk measures in finance, insurance, and statistics, which has recently been characterized via sets of axioms from perspectives of portfolio risk management and statistics. Meanwhile, there is large literature on insurance design with ES as an objective or a constraint. A visible gap is to justify the special role of ES in insurance and actuarial science. To fill this gap, we study characterization of risk measures induced by efficient insurance contracts, i.e., those that are Pareto optimal for the insured and the insurer. One of our major results is that we characterize a mixture of the mean and ES as the risk measure of the insured and the insurer, when contracts with deductibles are efficient. Characterization results of other risk measures, including the mean and distortion risk measures, are also presented by linking them to different sets of contracts.
We study a finite horizon optimal contracting problem of a risk-neutral principal and a risk-averse agent who receives a stochastic income stream when the agent is unable to make commitments. The problem involves an infinite number of constraints at each time and each state of the world. Miao and Zhang (2015) have developed a dual approach to the problem by considering a Lagrangian and derived a Hamilton-Jacobi-Bellman equation in an infinite horizon. We consider a similar Lagrangian in a finite horizon, but transform the dual problem into an infinite series of optimal stopping problems. For each optimal stopping problem we provide an analytic solution by providing an integral equation representation for the free boundary. We provide a verification theorem that the value function of the original principals problem is the Legender-Fenchel transform of the integral of the value functions of the optimal stopping problems. We also provide some numerical simulation results of optimal contracting strategies
This paper gives an overview of the theory of dynamic convex risk measures for random variables in discrete time setting. We summarize robust representation results of conditional convex risk measures, and we characterize various time consistency properties of dynamic risk measures in terms of acceptance sets, penalty functions, and by supermartingale properties of risk processes and penalty functions.
In this paper, we study general monetary risk measures (without any convexity or weak convexity). A monetary (respectively, positively homogeneous) risk measure can be characterized as the lower envelope of a family of convex (respectively, coherent) risk measures. The proof does not depend on but easily leads to the classical representation theorems for convex and coherent risk measures. When the law-invariance and the SSD (second-order stochastic dominance)-consistency are involved, it is not the convexity (respectively, coherence) but the comonotonic convexity (respectively, comonotonic coherence) of risk measures that can be used for such kind of lower envelope characterizations in a unified form. The representation of a law-invariant risk measure in terms of VaR is provided.
In order to evaluate the quality of the scientific research, we introduce a new family of scientific performance measures, called Scientific Research Measures (SRM). Our proposal originates from the more recent developments in the theory of risk measures and is an attempt to resolve the many problems of the existing bibliometric indices. The SRM that we introduce are based on the whole scientists citation record and are: coherent, as they share the same structural properties; flexible to fit peculiarities of different areas and seniorities; granular, as they allow a more precise comparison between scientists, and inclusive, as they comprehend several popular indices. Another key feature of our SRM is that they are planned to be calibrated to the particular scientific community. We also propose a dual formulation of this problem and explain its relevance in this context.
In this paper, we introduce the rich classes of conditional distortion (CoD) risk measures and distortion risk contribution ($Delta$CoD) measures as measures of systemic risk and analyze their properties and representations. The classes include the well-known conditional Value-at-Risk, conditional Expected Shortfall, and risk contribution measures in terms of the VaR and ES as special cases. Sufficient conditions are presented for two random vectors to be ordered by the proposed CoD-risk measures and distortion risk contribution measures. These conditions are expressed using the conventional stochastic dominance, increasing convex/concave, dispersive, and excess wealth orders of the marginals and canonical positive/negative stochastic dependence notions. Numerical examples are provided to illustrate our theoretical findings. This paper is the second in a triplet of papers on systemic risk by the same authors. In cite{DLZorder2018a}, we introduce and analyze some new stochastic orders related to systemic risk. In a third (forthcoming) paper, we attribute systemic risk to the different participants in a given risky environment.