No Arabic abstract
We derive a quantum kinetic theory for QED including both elastic and inelastic collisions with screening effect. By assuming parity invariance at the lowest order in $hbar$, we find the classical limit of the kinetic theory generalizes the well-known classical kinetic theory to massive case. The resulting classical kinetic theory simplifies when fermion bare mass is much greater than thermal mass. In this case only elastic collision is relevant and screening is only needed for Coulomb scattering. For a given solution to the classical kinetic theory, we find at $O(hbar)$ non-dynamical part of the quantum correction to Wigner functions for fermion and photon, which gives rise to spin polarization for fermion and photon respectively. Other contributions to spin polarizations from dynamical part of the correction to Wigner function are possible when parity violating sources are present.
We present the complete first order relativistic quantum kinetic theory with spin for massive fermions derived from the Wigner function formalism in a concise form that shows explicitly how the 32 Wigner equations reduce to 4 independent transport equations. We solve modified on-shell conditions to obtain the general solution and present the corresponding transport equations in three different forms that are suitable for different purposes. We demonstrate how different spin effects arise from the kinetic theory by calculating the chiral separation effect with mass correction, the chiral anomaly from the axial current and the quantum magnetic moment density induced by vorticity and magnetic field. We also show how to generate the global polarization effect due to spin vorticity coupling. The formalism presented may serve as a practical theoretical framework to study different spin effects in relativistic fermion systems encountered in different areas such as heavy ion, astro-particle and condensed matter physics as well.
We give a brief overview of the kinetic theory for spin-1/2 fermions in Wigner function formulism. The chiral and spin kinetic equations can be derived from equations for Wigner functions. A general Wigner function has 16 components which satisfy 32 coupled equations. For massless fermions, the number of independent equations can be significantly reduced due to the decoupling of left-handed and right-handed particles. It can be proved that out of many components of Wigner functions and their coupled equations, only one kinetic equation for the distribution function is independent. This is called the disentanglement theorem for Wigner functions of chiral fermions. For massive fermions, it turns out that one particle distribution function and three spin distribution functions are independent and satisfy four kinetic equations. Various chiral and spin effects such as chiral magnetic and votical effects, the chiral seperation effect, spin polarization effects can be consistently described in the formalism.
We revisit the chiral anomaly in the quantum kinetic theory in the Wigner function formalism under the background field approximation. Our results show that the chiral anomaly is actually from the Dirac sea or the vacuum contribution in the un-normal-ordered Wigner function. We also demonstrate that this contribution modifies the chiral kinetic equation for antiparticles.
Using and comparing kinetic theory and second-order Chapman-Enskog hydrodynamics, we study the non-conformal dynamics of a system undergoing Bjorken expansion. We use the concept of `free-streaming fixed lines for scaled shear and bulk stresses in non-conformal kinetic theory and hydrodynamics, and show that these `fixed lines behave as early-time attractors and repellors of the evolution. In the conformal limit, the free-streaming fixed lines reduce to the well-known fixed points of conformal Bjorken dynamics. A new fixed point in the free streaming regime is identified which lies at the intersection of these fixed lines. Contrary to the conformal scenario, both kinetic theory and hydrodynamics predict the absence of attractor behavior in the normalised shear stress channel. In kinetic theory a far-off-equilibrium attractor is found for the normalised effective longitudinal pressure, driven by rapid longitudinal expansion. Second-order viscous hydrodynamics fails to accurately describe this attractor. From a thorough analysis of the free-streaming dynamics in Chapman-Enskog hydrodynamics we conclude that this failure results from an inaccurate approximation of the fixed lines and a related incorrect description of the nature of the fixed point. A modified anisotropic hydrodynamic description is presented that provides excellent agreement with kinetic theory results and reproduces the far-from-equilibrium attractor for the scaled longitudinal pressure.
We investigate the relationship between the covariant and the three-dimensional (equal-time) formulations of quantum kinetic theory. We show that the three-dimensional approach can be obtained as the energy average of the covariant formulation. We illustrate this statement in scalar and spinor QED. For scalar QED we derive Lorentz covariant transport and constraint equations directly from the Klein-Gordon equation rather than through the previously used Feshbach-Villars representation. We then consider pair production in a spatially homogeneous but time-dependent electric field and show that the pair density is derived much more easily via the energy averaging method than in the equal-time representation. Proceeding to spinor QED, we derive the covariant version of the equal-time equation derived by Bialynicki-Birula et al. We show that it must be supplemented by another self-adjoint equation to obtain a complete description of the covariant spinor Wigner operator. After spinor decomposition and energy average we study the classical limit of the resulting three-dimensional kinetic equations. There are only two independent spinor components in this limit, the mass density and the spin density, and we derive also their covariant equations of motion. We then show that the equal-time kinetic equation provides a complete description only for constant external electromagnetic fields, but is in general incomplete. It must be supplemented by additional constraints which we derive explicitly from the covariant formulation.