Do you want to publish a course? Click here

A globally smooth solution to the relativistic string equation

172   0   0.0 ( 0 )
 Added by Jinhua Wang
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We prove the global existence of smooth solution to the relativistic string equation in a class of data that is not small. Our solution admits the feature that the right-travelling wave can be large and the left-travelling wave is sufficiently small, and vice versa. In particular, the large-size solution exists in the whole space, instead of a null strip arising from the short pulse data. This generalizes the result of Liuli-Yang-Yu (Adv. Math. 2018) to the quasilinear setting with non-small data. In addition, in our companion paper, we are able to show the global solution here can also be seen as the non-small perturbations of the plane wave solutions.



rate research

Read More

Consider a formally self-adjoint first order linear differential operator acting on pairs (2-columns) of complex-valued scalar fields over a 4-manifold without boundary. We examine the geometric content of such an operator and show that it implicitly contains a Lorentzian metric, Pauli matrices, connection coefficients for spinor fields and an electromagnetic covector potential. This observation allows us to give a simple representation of the massive Dirac equation as a system of four scalar equations involving an arbitrary two-by-two matrix operator as above and its adjugate. The point of the paper is that in order to write down the Dirac equation in the physically meaningful 4-dimensional hyperbolic setting one does not need any geometric constructs. All the geometry required is contained in a single analytic object - an abstract formally self-adjoint first order linear differential operator acting on pairs of complex-valued scalar fields.
We consider the hyperboloidal initial value problem for the cubic focusing wave equation. Without symmetry assumptions, we prove the existence of a co-dimension 4 Lipschitz manifold of initial data that lead to global solutions in forward time which do not scatter to free waves.
We consider the initial value problem for the spherically symmetric, focusing cubic wave equation in three spatial dimensions. We give numerical and analytical evidence for the existence of a universal attractor which encompasses both global and blowup solutions. As a byproduct we get an explicit description of the critical behavior at the threshold of blowup.
This paper extends the model reduction method by the operator projection to the one-dimensional special relativistic Boltzmann equation. The derivation of arbitrary order globally hyperbolic moment system is built on our careful study of two families of the complicate Grad type orthogonal polynomials depending on a parameter. We derive their recurrence relations, calculate their derivatives with respect to the independent variable and parameter respectively, and study their zeros and coefficient matrices in the recurrence formulas. Some properties of the moment system are also proved. They include the eigenvalues and their bound as well as eigenvectors,hyperbolicity, characteristic fields, linear stability, and Lorentz covariance. A semi-implicit numerical scheme is presented to solve a Cauchy problem of our hyperbolic moment system in order to verify the convergence behavior of the moment method. The results show that the solutions of our hyperbolic moment system can converge to the solution of the special relativistic Boltzmann equation as the order of the hyperbolic moment system increases.
122 - Molin Liu , Hongya Liu , Feng luo 2007
After the nontrivial quantum parameters $Omega_{n}$ and quantum potentials $V_{n}$ obtained in our previous research, the circumstance of a real scalar wave in the bulk is studied with the similar method of Brevik (2001). The equation of a massless scalar field is solved numerically under the boundary conditions near the inner horizon $r_{e}$ and the outer horizon $r_{c}$. Unlike the usual wave function $Psi_{omega l}$ in 4D, quantum number $n$ introduces a new functions $Psi_{omega l n}$, whose potentials are higher and wider with bigger n. Using the tangent approximation, a full boundary value problem about the Schr$ddot{o}$dinger-like equation is solved. With a convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients are obtained. If extra dimension does exist and is visible at the neighborhood of black holes, the unique wave function $Psi_{omega l n}$ may say something to it.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا