Do you want to publish a course? Click here

The Real Solution to Scalar Field Equation in 5D Black String Space

123   0   0.0 ( 0 )
 Added by Molin Liu
 Publication date 2007
  fields Physics
and research's language is English




Ask ChatGPT about the research

After the nontrivial quantum parameters $Omega_{n}$ and quantum potentials $V_{n}$ obtained in our previous research, the circumstance of a real scalar wave in the bulk is studied with the similar method of Brevik (2001). The equation of a massless scalar field is solved numerically under the boundary conditions near the inner horizon $r_{e}$ and the outer horizon $r_{c}$. Unlike the usual wave function $Psi_{omega l}$ in 4D, quantum number $n$ introduces a new functions $Psi_{omega l n}$, whose potentials are higher and wider with bigger n. Using the tangent approximation, a full boundary value problem about the Schr$ddot{o}$dinger-like equation is solved. With a convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients are obtained. If extra dimension does exist and is visible at the neighborhood of black holes, the unique wave function $Psi_{omega l n}$ may say something to it.



rate research

Read More

The Nariai black hole, whose two horizons are lying close to each other, is an extreme and important case in the research of black hole. In this paper we study the evolution of a massless scalar field scattered around in 5D Schwarzschild-de Sitter black string space. Using the method shown by Brevik and Simonsen (2001) we solve the scalar field equation as a boundary value problem, where real boundary condition is employed. Then with convenient replacement of the 5D continuous potential by square barrier, the reflection and transmission coefficients ($R, T$) are obtained. At last, we also compare the coefficients with usual 4D counterpart.
As one exact candidate of the higher dimensional black hole, the 5D Ricci-flat Schwarzschild-de Sitter black string space presents something interesting. In this paper, we give a numerical solution to the real scalar field around the Nariai black hole by the polynomial approximation. Unlike the previous tangent approximation, this fitting function makes a perfect match in the leading intermediate region and gives a good description near both the event and the cosmological horizons. We can read from our results that the wave is close to a harmonic one with the tortoise coordinate. Furthermore, with the actual radial coordinate the waves pile up almost equally near the both horizons.
As one candidate of the higher dimensional black holes, the 5D Ricci-flat black string is considered in this paper. By means of a non-trivial potential $V_{n}$, the quasi-normal modes of a massless scalar field around this black string space is studied. By using the classical third order WKB approximation, we analyse carefully the evolution of frequencies in two aspects, one is the induced cosmological constant $Lambda$ and the other is the quantum number $n$. The massless scalar field decays more slowly because of the existences of the fifth dimension and the induced cosmological constant. If extra dimension has in fact existed near black hole, those quasi-normal frequencies may have some indication on it.
Assuming that a scalar field controls the inflationary era, we examine the combined effects of string and $f(R)$ gravity corrections on the inflationary dynamics of canonical scalar field inflation, imposing the constraint that the speed of the primordial gravitational waves is equal to that of lights. Particularly, we study the inflationary dynamics of an Einstein-Gauss-Bonnet gravity in the presence of $alpha R^2$ corrections, where $alpha$ is a free coupling parameter. As it was the case in the pure Einstein-Gauss-Bonnet gravity, the realization that the gravitational waves propagate through spacetime with the velocity of light, imposes the constraint that the Gauss-Bonnet coupling function $xi(phi)$ obeys the differential equation $ddotxi=Hdotxi$, where $H$ is the Hubble rate. Subsequently, a relation for the time derivative of the scalar field is extracted which implies that the scalar functions of the model, which are the Gauss-Bonnet coupling and the scalar potential, are interconnected and simply designating one of them specifies the other immediately. In this framework, it is useful to freely designate $xi(phi)$ and extract the corresponding scalar potential from the equations of motion but the opposite is still feasible. We demonstrate that the model can produce a viable inflationary phenomenology and for a wide range of the free parameters. Also, a mentionable issue is that when the coupling parameter $alpha$ of the $R^2$ correction term is $alpha<10^{-3}$ in Planck Units, the $R^2$ term is practically negligible and one obtains the same equations of motion as in the pure Einstein-Gauss-Bonnet theory, however the dynamics still change, since now the time derivative of $frac{partial f}{partial R}$ is nonzero.
As one of the fitting methods, the polynomial approximation is effective to process sophisticated problem. In this paper, we employ this approach to handle the scattering of scalar field around the Schwarzschild-de Sitter black-hole. The complex relationship between tortoise coordinate and radial coordinate is replaced by the approximate polynomial. The Schr$ddot{o}$dinger-like equation, the real boundary conditions and the polynomial approximation construct a full Sturm-Liouville type problem. Then this boundary value problem can be solved numerically according to two limiting cases: the first one is the Nariai black-hole whose horizons are close to each other, the second one is when the horizons are widely separated. Compared with previous results (Brevik and Tian), the field near the event horizon and cosmological horizon can have a better description.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا